

UNIVERSITY OF SOUTHAMPTON SEPTEMBER 2018

FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES OCEAN AND EARTH SCIENCES

OPTIMISATION OF A METHOD TO QUANTIFY MICROPLASTICS IN INTER-TIDAL SEDIMENTS AROUND JERSEY, CHANNEL ISLANDS

by

Hannah Brittain

A dissertation submitted in partial fulfilment of the requirements for the

degree of M.Sc. Oceanography by instructional course.

DECLARATION

As the nominated University supervisor of this M.Sc. project by Hannah Brittain, I confirm that I have had the opportunity to comment on earlier drafts of the report prior to submission of the dissertation for consideration of the award of M.Sc. Oceanography.

Signed.....

Supervisor's name:

21st September 2018

TABLE OF CONTENTS

A	bstrac	ct		I
A	cknov	vledą	gements	
L	ist of ⁻	Table	es	
L	ist of I	-igu	res	IV
1	Intr	odu	ction	1
	1.1	Glo	bbal Significance and Impacts of Marine Microplastic Pollution	3
	1.2	Re	corded Concentrations in Coastal Sediments	4
	1.3	Exi	sting Methods to Extract Microplastics from Marine Sediments	7
	1.4	Re	search Aims and Objectives	8
2	Ме	thod	ls	9
	2.1	Are	ea of Study	9
	2.2	Sa	mple Collection, Preparation and Storage	10
	2.3	Cla	aessens et al.'s Method	11
	2.4	The	e Standardised Size Colour Sorting (SCS) System	12
	2.5	Me	thod Optimisation	14
	2.5	.1	Nested vs Single Sieves	14
	2.5	.2	Considerations for microplastics < 38 µm	14
	2.5	.3	Low Cost, High Density Salt Solution	15
	2.5	.4	Transferring Retained Solids to Zinc Chloride Salt Solution	15
	2.5	.5	Blanks Using Water of Different Origin and Purity	16
	2.6	Mir	nimisation of Contamination	17
	2.7	Am	nended Method Protocol	18
	2.7	.1	Volume Reduction via Elutriation	18
	2.7	.2	Floatation using 7M Zinc Chloride Salt Solution	19
	2.7	.3	Visual Sorting using Light Microscopy	19
	2.8	Spi	iked Sediment Extraction Efficiency Tests	20
	2.9	Gra	ain Size Analysis	20

3	Re	Results						
	3.1 Seawater, Tap Water and Reverse Osmosis Water Blanks							
	3.2	Spi	ked Sediment Extraction Efficiency Tests	22				
	3.3	Jer	sey Intertidal Sediment Sample Analysis: Initial Observations	23				
	3.3	3.1	Abundance of Material on St Aubins (SA) Filters	23				
	3.3	3.2	Total Counts of Particles on Filters	24				
	3.4	Cha	aracteristics of Microplastics on Jersey Beaches	25				
	3.4	4.1	Size	25				
	3.4	4.2	Morphology	25				
	3.4	4.3	Colour	26				
	3.4	4.4	Size and Characteristics of Large Microplastics (MP)	28				
	3.5	Est	imates for Microplastic Contamination in the Environment	29				
	3.6	Gra	ain Size Analysis and Sample Loss					
4	Di	scuss	sion					
	4.1	Mic	croplastics in Jersey Intertidal Sediments	32				
	4.2	Sou	urces of Contamination in the Laboratory	34				
	4.3	Sar	mple Loss					
	4.4	Lov	w Method Extraction Efficiency					
	4.5	Pot	ential Impacts of Sediment Grain Size on Method Suitability					
	4.6	lde	ntification of Microplastics using Light Microscopy	40				
5	Su	ımma	ary of Findings					
6	Fu	iture	Directions	43				
L	iterat	ure C	lited	44				
A	ppen	dix		i				
	COSHH and Risk Assessment Formsi							
	Sedi	iment	Drying Regime Results	xiii				
	Catalogue Details for Microplastic Colour Examplesxiv							
	Grain Size Analysis Data and Distribution Graphsxv							

ABSTRACT

Microplastics are microscopic pieces of plastic between $1 \mu m - 5 mm$. They are an emerging threat to marine environments worldwide, occurring primarily through degradation of larger items of plastic. A number of adverse effects have been documented in marine species following exposure to microplastics, so it is important to monitor microplastic concentrations in the marine environment to assess potential impacts to marine ecosystems and commercial fisheries. In an attempt to address the current lack of consensus on standardised and robust methods for microplastics quantification, this study aimed to optimise a method to extract microplastics from sediment samples. A method that had been proposed in the literature with promising preliminary results was selected, then several adaptations were experimentally applied to optimise the method. An amended method was finalised, involving three steps; 1. Volume reduction via elutriation; 2. Extraction of microplastics via floatation and 3. Visual sorting using a dissection microscope. The method was applied to intertidal samples from beaches around Jersey, Channel Islands, which had not, to date, been quantified for microplastic contamination. A microplastic profile was catalogued using visual sorting under a dissection microscope, based on size, shape and colour of individual particles observed. Microplastic profiles for West and East Jersey beaches were similar. Fragments were the most common shape, and brown and black were the most common two colours observed across both sites. However, the method had a low extraction efficiency of 31 %, which varied across size, shape and polymer type, so the profiles observed are not likely to be fully representative of microplastics in the environment. A number of additional method limitations were identified, including an especially poor extraction efficiency for microplastics > 1 mm (22 %), background contamination in the laboratory, several potential loss steps, and the inability to confirm the synthetic polymer origin of particles resembling microplastics. Suggested improvements were provided to avoid similar limitations in future work. Overall these findings highlight the implicit variance in microplastics data and substantiate the importance of clean laboratory spaces and standardised methods for the quantification of microplastics.

ACKNOWLEDGEMENTS

I would like to thank my project supervisor, **Example 1**, for **Example 1**, for **Example 1**, for **Example 2**, for **Example 2**,

assistance no doubt more than halved the time it would have taken me to carry out lab experiments alone, and positive attitude helped me to keep striving through the challenges this project presented.

I also thank the members of the	for their thoughts and ideas
in the early stages of my project.	Other notable academic contributors were
who advised me on the prot	ocol for spiked sediment experiments;
for their help	with producing microplastics for spiked experiments;
for his help setti	ng up the elutriation experiments in the aquarium and
lending me tools;	r allowing me use of see laboratory oven to prepare
samples; for helping i	me with grain size analysis and
allowing me use of the sediment d	ynamics lab to do so.
I extend my sincere thanks to	and the team at the

I extend my sincere thanks to	and the team at the	
and the		, who
graciously collected and shipped a selection of	of Jersey sediment samples to	upon

request.

Finally, I would like to thank my friends and coursemates, who have supported me in countless ways towards the creation of this report.

LIST OF TABLES

Table 2.1 Jersey intertidal sites sampled. Beach names are provided along with an abbreviations for the samples from each intertidal site. Exact coordinates of where the sample was collected are provided in latitude and longitude along with the date each site was sampled.

 10

LIST OF FIGURES

Figure 1.1 Annual global plastic production from 1950 – 2015 in million metric tonnes (Mt) (Geyer et al., 2017).

Figure 1.2 Plastic debris nomenclature based on size, including microplastics, as proposed by the European MSFD Technical Subgroup on Marine Litter (2013). Microplastics are further split into two size categories; small microplastics (1 μ m – 1 mm) and large microplastics (1 – 5 mm), to differentiate between two commonly used size ranges of microplastics in literature. Adapted from Van Cauwenberghe et al. (2015b)...6

Figure 2.3 Elutriation column schematic, amended from Claessens et al. (2013). 18

1 INTRODUCTION

'Plastics' are synthetic materials composed of many recurring smaller molecules, also known as synthetic polymers (Crawford and Quinn, 2016). Plastics are manufactured from organic and inorganic raw materials (i.e. carbon, silicon, hydrogen, oxygen and chloride) which are typically extracted from oil, coal and natural gas (Shah et al., 2008). The first modern plastic material, Bakelite (chemical name: polyoxybenzyl methylene glycol anhydride), was developed in 1907 (Cole et al., 2011). Soon after this, manufacturing techniques were developed through the 1940s to allow for the massproduction of plastics. Plastic production has increased exponentially since 1950 (Figure 1.1), with an estimated 381 million metric tonnes (Mt) produced in 2015, compared to 2 Mt in 1950; an almost 200-fold increase within 65 years (Geyer et al., 2017). There are many different types of plastic in existence today, with a range of useful properties. Some common properties of plastics include durability, malleability, low thermal conductivity, high strength to weight ratio and biological inertness (Andrady, 2011). Ultimately, plastic materials have changed the way we live, and have become universal to industries and everyday domestic settings alike.

With an exponential increase in production, waste plastic has also accrued at a similar rate, with around 10 % of this waste entering the ocean every year (Barnes et al., 2009).

Figure 1.1 Annual global plastic production from 1950 – 2015 in million metric tonnes (Mt) (Geyer et al., 2017).

The majority of marine plastic debris originates from land-based sources (80 %), with plastic waste being generated primarily from densely populated and industrialised areas (Li et al., 2016). The other 20 % of plastic debris in the marine environment is oceanbased, originating primarily from commercial fishing activities. The first reports of plastics within marine debris date back to the 1970s (Buchanan, 1971; Carpenter and Smith Jr., 1972; Colton et al., 1974; Gregory, 1978). These studies did not garner much attention from the scientific community at the time. However, evidence mounted in the following years of a variety of ecological consequences posed by plastic marine debris, such as entanglement of large marine animals, such as turtles, in larger pieces of plastic debris (Barnes et al., 2009; Gall and Thompson, 2015). Using worldwide data on waste and population statistics, Jambeck et al. (2015) estimated that 4.8–12.7 million metric tonnes of plastic waste from the land entered the marine environment in 2010 alone, with further increases expected as plastic demand increases. The use of 'single-use', disposable plastic products, such as straws and cups, has exacerbated the problem of plastic waste by increasing the rate at which plastic becomes waste material (Ivar Do Sul and Costa, 2014).

More recently, the focus of academics has shifted towards the arguably more insidious issue of microplastics in the marine environment (GESAMP, 2015). Microplastics are microscopic pieces of plastic, between 1 μ m – 5 mm across their widest diameter (Germanov et al., 2018). Primary microplastics are deliberately manufactured at a microscopic size (Boucher and Friot, 2017). This includes industrial pellets, which are used to manufacture plastic products (Gregory, 1983), and microbeads, which have been used widely in cosmetics products such as toothpaste and facial scrubs (Andrady, 2011). Analysis of outfall water has indicated that microbeads from cosmetics are able to enter the environment via wastewater treatment plants (Murphy et al., 2016). Microbeads are currently being phased out in cosmetics in the UK following the introduction of new legislation proposing a microbead ban in 2017 (Draft Statutory Instruments, 2017). Secondary microplastics are more common than primary microplastics in the marine environment, and occur as a result of degradation of larger plastic items (mesoplastics) and macroplastics) via chemical and physical processes (Sundt et al., 2014). In the marine environment, the predominant processes, resulting in macroplastic degradation into microplastics, include physical weathering through wave action and solar UV photodegradation (Li et al., 2016). Secondary microplastic fibres have also been found to leach from clothing during wash cycles, with a single garment being able to produce >1900 fibres per wash (Browne et al., 2011).

1.1 GLOBAL SIGNIFICANCE AND IMPACTS OF MARINE MICROPLASTIC POLLUTION

Microplastics have been labelled as an environmental contaminant of concern, with a number of recorded impacts on marine species (Teuten et al., 2009; Wright et al., 2013). These impacts can be caused by microplastics as a pollutant in its own right, including changes in behaviour, gene expression or physiological function following the ingestion of microplastics by various marine species. For example, an exposure experiment by Sussarellu et al. (2016) indicated that exposing the Pacific Oyster (*Crassostrea gigas*) to microplastics for 2 months, at environmentally realistic concentrations, resulted in a reduction in feeding, gamete quality and fecundity via ingestion.

There are also indirect impacts caused by microplastics in the marine environment. This includes the ability of microplastics to absorb a range of persistent organic pollutants (POPs) onto their surface, such as polychlorinated biphenyls (PBCs), which are toxic to most marine organisms at high doses and associated with reduced fecundity at lower doses (Teuten et al., 2009). For example, a study by Besseling et al. (2013) found that weight loss and bioaccumulation of PCBs occurred in polychaetes (Arenicola marina) following the ingestion of microplastic particles laced with PCBs. In addition, it has been hypothesized that POPs accumulate in megafauna (i.e. mobulid rays, whale sharks and baleen whales), through the indiscriminate filter feeding of water containing microplastics that have absorbed POPs (Germanov et al., 2018). Environmental observations supporting this theory include the presence of plastic additives and POPs in samples of basking shark muscle, fin whale blubber and whale shark skin (Fossi et al., 2017, 2014, 2012). Potential impacts to megafauna include altered reproductive fitness, endocrine disruption and general disruption to biological processes (Germanov et al., 2018). Another impact that has been hypothesised is that biofilms which form on microplastics could play host to harmful bacteria such as Vibrio spp. which are capable of harbouring putative oyster pathogens (Frère et al., 2018; Harrison et al., 2014; Kirstein et al., 2016; Zettler et al., 2013). There is also growing concern for microplastics becoming a threat to human health, through trophic transfer of microplastics and absorbed POPs to commercial species (Farrell and Nelson, 2013; Van Cauwenberghe and Janssen, 2014).

Considered in the light of their persistence in the marine environment, the impacts of microplastics are a pervasive threat to all marine environments. Microplastics are ubiquitous to marine environments globally (Eriksen et al., 2014; Germanov et al., 2018). They have been detected throughout the water column and sediments worldwide, and also within many marine organisms and seabirds (Andrady, 2011; Wright et al., 2013).

Lower density microplastics (specific gravity < 1 g cm⁻³), such as expanded polystyrene/ Styrofoam (EPS), tend to be positively buoyant in seawater. These microplastics can therefore be transported thousands of miles via surface waters from their source location due to oceanic and wind-driven currents (Baztan et al., 2014). Eriksen et al. (2014) estimate that there are 5.25 trillion plastic particles currently floating in the oceans, equivalent to 268,940 tonnes, with microplastics contributing 92.4 % by number of particles and 13.2 % by weight. Subtropical gyres in particular are known to be regions where microplastics accumulate due to oceanic currents (Cozar et al., 2014; Eriksen et al., 2013b; Moore et al., 2001). In addition, deep sea sediments have been hypothesised as a major sink for higher density microplastics (Van Cauwenberghe et al., 2013b; Woodall et al., 2014). Microplastics are also prone to sinking due to biological interactions with fouling fauna and slow sinking aggregates (Kaiser et al., 2017; Long et al., 2015). It is hypothesized that coastal transport of microplastics, which regulates their spatial and temporal distribution, is a major controlling process in the environmental fate and risks posed to marine species by microplastics (Zhang, 2017).

1.2 RECORDED CONCENTRATIONS IN COASTAL SEDIMENTS

Microplastics are present in marine sediments worldwide and have been found to accumulate in coastal regions (Zhang, 2017). A summary of recorded concentrations of microplastics in coastal sediments is provided in Table 1.1. This covers a range of locations around the world, but is by no means an exhaustive list. Research quantifying microplastics in sediment has been primarily focused on intertidal and littoral zones of beaches. Table 1.1 includes over 30 examples of beach-focused studies, spanning the continents of Africa, America, Asia and Europe (Baztan et al., 2014; Ivar do Sul et al., 2009; Kaberi et al., 2013; Ng and Obbard, 2006). Other coastal environments that have been quantified for sediment microplastic concentrations include mangroves, estuaries, harbours and subtidal bays (Claessens et al., 2011; Fok and Cheung, 2015; Mohamed Nor and Obbard, 2014; Vianello et al., 2013).

The field of microplastics research is relatively new, with the majority of key papers published within the last decade. As such, there has been a lack of consensus in the literature, as the field has developed, with regards to standardised measurement units for microplastic concentrations and the size range for microplastics (Hidalgo-Ruz et al., 2012). This has led to a range of literature results that are difficult to compare directly with one another , on account of the various units of measurement and size ranges documented (Van Cauwenberghe et al., 2015b).

The most commonly used units of measurement for microplastic concentration in sediments were microplastics per square metre (MP m⁻²), typically reported in studies which used quadrants to sample an area for abundance per unit of surface (Table 1.1). Other commonly used units include microplastics per kilogram of dry sediment (MP kg⁻¹ DW), and microplastics per litre of sediment (MP L⁻¹). Sediment samples are likely to

Continent	Location	Specific location	Size range	Predominant Type	Concentration	Reference
Africa	Canary Islands	Beach	1 mm – 5 mm	Fragment, pellets	< 1 – 109 g L ⁻¹	Baztan et al., 2014
	South Africa	Beach	65 µm – 5 mm	Fibres 90%	688.9 – 3308 MP m ⁻²	Nel and Froneman, 2015
America	Canada	Beach	< 1 mm – > 5 mm	PE predominant	< 10 MP m ⁻²	Gregory, 1983
	Bermuda	Beach	< 1 mm – > 5 mm	PE predominant	> 5000 MP m ⁻²	
	Hawaii	Beach	1 mm – 4.75 mm	Fragment	43.4 MP L ⁻¹	McDermid and McMullen, 2004
	US	Florida, subtidal	250 µm – 4 mm	Fragment	116 – 215 MP L ⁻¹	Graham and Thompson, 2009
		Maine, subtidal	250 µm – 4 mm	Fragment	105 MP L ⁻¹	
	Brazil	Noronha, Beach	2 mm – 5 mm	Fragment 65%	15 MP kg ⁻¹	Ivar do Sul et al., 2009
	Hawaii	Ka Milo, Beach	250 µm – 4 mm	PE 85%	211.8 MP m ⁻³	Carson et al., 2011
	Chile	Beach	1 mm – 4.75 mm	Fragment 89%	27 MP m ⁻²	Hidalgo-Ruz and Thiel, 2013
	Canada	Nova Scotia, Beach	0.8 µm – 5 mm	Plastic fibres	2000 – 8000 MP kg ⁻¹	Mathalon and Hill, 2014
	Brazil	Beach	47 µm – 5 mm	Fibres, fragments	12 – 1300 MP m ⁻²	de Carvalho and Neto, 2016
	Gulf of Mexico	Marine-dominated	200 µm – 5 mm	Fibres, fragments	50.6 MP m ⁻²	Wessel et al., 2016
		Freshwater-dominated	200 µm – 5 mm	Fibres, fragments	13.2 MP m ⁻²	
Asia	Oman Gulf	Beach	2 mm – 5 mm	PE, pellets	> 100 MP m ⁻²	Khordagui and Abu- Hilal, 1994
	Arabian Gulf	Beach	2 mm – 5 mm	PE, pellets	< 80,000 MP m ⁻²	
	Japan	Beach	2 mm – 5 mm	Fragment 41%	8 – 17 MP m ⁻²	Kusui and Noda, 2003
	Singapore	Beach	1.6 µm – 5 mm	PE and PS	< 3 MP kg ⁻¹ DW	Ng and Obbard, 2006
	India	Ship-breaking yard	1.6 µm – 5 mm	Fragment 100%	81.4 mg kg ⁻¹	Reddy et al., 2006
	India	Beach	1 mm – 5 mm	Fragment	68.8 MP m ⁻²	Jayasiri et al., 2013
	South Korea	Beach dry season	1 mm – 5 mm	PS expanded >96%	8205 MP m ⁻²	Lee et al., 2013
		Beach rainy season	1 mm – 5 mm	PS expanded >96%	27,606 MP m ⁻²	
	Singapore	Mangrove	1.6 µm – 5 mm	PE, PP, nylon & PVC	36.8 MP kg ⁻¹ DW	Mohamed Nor and Obbard, 2014
	South Korea	Beach	50 µm – 5 mm	PS expanded	56 – 285,673 MP m ⁻²	Kim et al., 2015
	Hong Kong	Pearl River estuary	315 µm – 5 mm	PS expanded 92%	5595 MP m ⁻²	Fok and Cheung, 2015
Australia	New Zealand	Beach	1 mm – 5 mm	PE and PP	> 1000 MP m ⁻²	Gregory, 1978
Europe	Russia	Beach	2 mm – 5 mm	Fragment 55.6%	5 – 10 MP m ⁻²	Kusui and Noda, 2003
	UK	Beach	1.6 µm – 5 mm	Fibres	8 MP L ⁻¹	Thompson et al., 2004
		Estuary	1.6 µm – 5 mm	Fibres	48 MP L ⁻¹	
		Subtidal	1.6 µm – 5 mm	Fibres	112 MP L ⁻¹	
	Sweden	Subtidal	80 µm – 5 mm	Fibres	20 – 3320 MP L ⁻¹	Norén, 2007
	UK	Tamar estuary	1.6 µm – 1 mm	PVC 26%; PE 35%	< 8 – 413 MP L ⁻¹	Browne et al., 2010
	UK	North Sea beach	38 µm – 1 mm	Fibres	4 – 16 MP L ⁻¹	Browne et al., 2011
		English Chl. beach	38 µm – 1 mm	Fibres	8 – 20 MP L ⁻¹	
		Subtidal	38 µm – 1 mm	Fibres	112 MP L ⁻¹	
	Belgium	Harbour	38 µm – 1 mm	Fibres 59%	166.7 MP kg ⁻¹ DW	Claessens et al., 2011
		Beach	38 µm – 1 mm	Fibres 59%	92.8 MP kg ⁻¹ DW	
	Portugal	Beach	1.2 µm – 5 mm	PE, Polyester, PS	133.3 MP m ⁻²	Martins and Sobral, 2011
	Malta	Beach	1.9 mm – 5.6 mm	PE, pellets	> 1000 MP m ⁻²	Turner and Holmes, 2011
	Italy	Venice, subtidal	0.7 µm – 1 mm	PE + PP 82%	672–2175 MP kg ⁻¹ DW	Vianello et al., 2013
	Germany	Tidal flat	1.2 µm – 5 mm	Granules	210 MP kg ⁻¹	Liebezeit and Dubaish, 2012
		Tidal flat	1.2 µm – 5 mm	Fibres	461 MP kg ⁻¹	
	Greece	Beach	1 mm – 2 mm	Fragment 68%	57 – 602 MP m ⁻²	Kaberi et al., 2013
		Beach	2 mm – 4 mm	Pellets	10 – 575 MP m ⁻²	
	Belgium	Low tide line	38 µm – 1 mm	Granules, fibres	9.2 MP kg ⁻¹ DW	Van Cauwenberghe et al., 2013a
		High tide line	38 µm – 1 mm	Fibres, granules	17.6 MP kg ⁻¹ DW	
	Germany	Beach	< 1 mm	PP, PE, PET	1.3 – 2.3 MP kg ⁻¹ DW	Dekiff et al., 2014
	Slovenia	Beach	0.25 mm – 5 mm	Fibres, fragments	177.8 MP kg ⁻¹ DW	Laglbauer et al., 2014
		Infralittoral	0.25 mm – 5 mm	Fibres, fragments	170.4 MP kg ⁻¹ DW	
	North Sea	Beach	35 µm – 1 mm	LDPE, HDPE and PS	0.3 – 11.7 MP kg ⁻¹	Van Cauwenberghe et al., 2015
	France	Subtidal	207 µm – 2 mm	PE 53.3%	0.97-MP kg ⁻¹ DW	Frère et al., 2017
	Scotland	Beach	0.7 µm – 5 mm	Fibres	2300 MP kg ⁻¹ DW	Blumenröder et al., 2017
		Beach	0.7 µm – 5 mm	Particles	730 MP kg ⁻¹ DW	

Table 1.1 Worldwide environmental concentrations of microplastics detected in coastal sediments. Sampling continent, location, specific location, and size range, morphology and/or polymer and concentration of microplastics are listed with their corresponding studies. MP = microplastics (i.e. number of fragments, microbeads, pellets, fibres, foams or films); DW = dry weight (of sediment). Plastic polymer types: PS = Polystyrene; (HD/LD)PE = (High Density/Low Density) Polyethylene; (U)PVC = (Un-plasticsed) Polyvinyl chloride; PP = Polypropylene; PET = Polyethylene terephthalate.

contain different water content depending on temporal and spatial variables (i.e. location on the beach, whether it was collected immediately before or after a high tide) and sediment porosity (Van Cauwenberghe et al., 2015b). For this reason, a number of authors have chosen to dry sediment samples before analysis, to remove water content as a variable and allow for a more consistent comparison of data, using units of MP kg⁻¹ DW (Claessens et al., 2011; Dekiff et al., 2014; Frère et al., 2017; Laglbauer et al., 2014; Mohamed Nor and Obbard, 2014; Ng and Obbard, 2006; Van Cauwenberghe et al., 2015a, 2013a; Vianello et al., 2013). This study also elected to use MP kg⁻¹ DW for microplastics concentration measurements.

Figure 1.2 shows the standard nomenclature for plastic debris in the environment, including the now largely accepted size range for microplastics, 1 - 5 mm (MSFD GES) Technical Subgroup on Marine Litter, 2013). The most common two size ranges used to quantify microplastics in the environment are < 1 mm and 1 - 5 mm, therefore it has been suggested that microplastics are split into two categories to reflect this (Figure 1.2). The concentrations of large microplastics (2 - 5 mm) reported for Japanese beaches (8 - 17)MP m⁻²), Russian beaches (5 – 10 MP m⁻²) and Noronha, Brazil (15 MP m⁻²) were low, compared to other studies reporting in the same units (Ivar do Sul et al., 2009; Kusui and Noda, 2003) (Table 1.2). Generally, studies that considered a size range encompassing smaller microplastics, reported much higher concentrations present in the environment. For example, Lee et al. (2013) reported concentrations of large microplastics (1 – 5 mm) at 8,205 and 27,606 MP m⁻² in South Korea beach sediments during the dry and rainy seasons, respectively. A later study from Kim et al. (2015) reported particularly high microplastic concentrations of up to 285,673 MP m⁻² on South Korea beaches. However, the size range of microplastics considered in this later paper was 50 μ m – 5 mm, thereby including an additional size range between 50 μ m – 1 mm not covered by Lee et al. (2013). Other studies considered only small microplastics (< 1 mm), including a number of European studies, which typically consider a size range of 38 µm - 1 mm for microplastics in sediment (Browne et al., 2011; Van Cauwenberghe et al., 2015a, 2013a). With these differences in reporting in mind, this study sought to quantify a size range of microplastics in sediments covering both large and small size fractions.

	10 ⁻⁶ m	10 ⁻⁴ m	10	0 ⁻² m	10 ⁰ m
	1 μm		5 mm	2.5 cm	
Nanoplastic	1 µm	Microplastic	1 mm 5 mm		Macroplastic
	•	Small	Large		

Figure 1.2 Plastic debris nomenclature based on size, including microplastics, as proposed by the European MSFD Technical Subgroup on Marine Litter (2013). Microplastics are further split into two size categories; small microplastics (1 μ m - 1 mm) and large microplastics (1 - 5 mm), to differentiate between two commonly used size ranges of microplastics in literature. Adapted from Van Cauwenberghe et al. (2015b).

1.3 EXISTING METHODS TO EXTRACT MICROPLASTICS FROM MARINE SEDIMENTS

Several techniques are employed by the scientific community to extract microplastics from sediment samples. For studies focused on intertidal areas of beaches, sediment samples are generally collected using metal implements (i.e. iron spoon or spade) (Van Cauwenberghe et al., 2015b). Following sample collection, a range of methods to extract microplastics from the natural sediment matrix (typically sand) can be used. The majority of these methods use a density separation approach, which utilises the differences in density between plastic and natural sediment particles to isolate microplastics from sediment. One of the simplest and most widely used methods was pioneered by Thompson et al. (2004). This method involves agitating a sediment sample in saturated sodium chloride (NaCl) salt solution to release microplastic particles from the sediment matrix, which float to the surface. However, only microplastics consisting of low density polymers (< 1.2 g cm⁻³) are able to be extracted using this method, as common salt solution will not surpass a density of 1.2 g cm⁻³. Therefore higher density polymers will not float to the surface and will remain in the sediment. Subsequent studies have used different types of salt to attain a higher density salt solution and increase the extraction efficiency for higher density polymers, such as polyvinyl chloride (PVC) (1.14 – 1.56 g cm⁻³), which comprises 17 % of European plastic demand (PlasticsEurope, 2015). Zinc chloride (ZnCl₂) solution (1.5 – 1.8 g cm⁻³) has been used in some studies (Coppock et al., 2017; Liebezeit and Dubaish, 2012) and sodium iodide (Nal) solution (1.3 – 1.8 g cm⁻ ³) has been used in others (Claessens et al., 2013; Coppock et al., 2017; Dekiff et al., 2014; Van Cauwenberghe et al., 2013a). High density microplastics are the first to sink and intersperse with sediments (seawater density is 1.02 g cm⁻³), therefore it is important that the methods used to analyse sediments are capable of extracting them (Van Cauwenberghe et al., 2015a). One limitation in using different salt solutions is the cost of materials. Coppock et al. (2017) provided estimate costs for NaCl, ZnCl₂ and Nal solutions of different densities. Nal and ZnCl₂ solutions (1.5 g cm⁻³) were 41.5 and 15.6 costs units, respectively, compared to the standard cost unit for NaCl solution (1.2 g cm⁻ ³). A new method was recently proposed by Claessens et al. (2013), which included a prior step to reduce the overall sample size before performing a floatation with highdensity salt solution, similar to the process described above. This involved elutriation, an upward stream of water that separates out lighter particles from denser ones. This volume reduction step allowed for a fraction of high-density salt solution to be used per sample, compared to the standard density separation method, which reduces the cost of required materials significantly. In addition, the extraction efficiency of this new two-step

method was reported by (Claessens et al., 2013) to be more efficient than using the flotation method alone. Claessens et al. (2013) tested the extraction efficiency of their method by using sediments spiked with a known amount of microplastics. Retrieval rates for microplastics were 100 % for microplastic granules, 98 % for fibres, and 100 % for PVC fragments, compared to 75 %, 61 % and 0 %, respectively, for the standard floatation method of Thompson et al. (2004).

1.4 RESEARCH AIMS AND OBJECTIVES

Considering the residing lack of consensus on standardised methods and reporting units for sediment analysis, the overarching aim of this research project was to develop a method to quantify the microplastic content of sediments. Based on the promising results in their 2013 paper, the method proposed by Claessens et al. (2013) was used as a starting point for method optimisation.

A need for quantification of microplastics in sediments around Jersey was highlighted in a project proposal from the States of Jersey's Department of the Environment (DoE). Contact was made with the DoE, who collaborated on this research project in order that the optimised method could be applied to Jersey intertidal sediment samples to assess microplastic contamination around the island.

Objectives:

- 1. Optimise a method to analyse sediment samples for microplastic content, based on the method put forward by Claessens et al. (2013).
- 2. Achieve a consistent method efficiency (microplastic recovery rate) of > 90 %
- 3. Apply the optimum method to intertidal sediment samples from Jersey and quantify microplastic contamination.
- 4. Create a microplastic profile for Jersey beaches (i.e. size, morphology and colour of microplastics).

2.1 AREA OF STUDY

Jersey is a self-governed island, situated in the English Channel 23 km from mainland France (Figure 2.1 (i)). The Bailiwick of Jersey is a Crown Dependency; a territory that is under the sovereignty of the British Crown but does not form part of the UK (Ministry of Justice, 2014). Following the introduction of draft legislation by the Department of the Environment and Rural Affairs (DEFRA) in 2017, banning the manufacture of plastic microbead scrubbers in personal care products in the UK, Jersey's Environment Minister publicly announced that Jersey would follow the UK's example (JEP, 2017). Quantifying and monitoring microplastics in the marine environment is an important part of understanding the extent of the problem of microplastics pollution. However, no research to date has set out to quantify microplastics in sediments, surface waters or outfall discharges around Jersey. For this reason, one of the main objectives of this research project was to apply an optimised method of quantifying microplastics in sediments to samples from intertidal sites on a selection of Jersey's beaches. Jersey experiences a hypertidal range of up to 12 m during spring tides, which is surpassed during storm surges. This makes for an interesting and dynamic environment in which to monitor microplastics contamination in intertidal sediments.

Intertidal Sediment Samples

Drying & separation

Мар Кеу

📃 Drying only

2.2 SAMPLE COLLECTION, PREPARATION AND STORAGE

The States of Jersey Department of the Environment (DoE) collaborated on this research project and, as part of this collaborative effort, very kindly collected and shipped a number of sediment samples to the National Oceanography Centre upon request. Figure 2.1 (ii) indicates the sample collection sites on a map of Jersey, and Table 2.1 provides the exact coordinates and a description of each of the intertidal sites selected by the author.

Beach name	Abbrev.	Latitude	Longitude	Date collected	Description of intertidal site
Long Beach	LB	49.195	-2.030	29/05/2018	East, RAMSAR site
L'Etacq	LE	49.240	-2.245	30/05/2018	West, storm washed
St Aubins	SA	49.191	-2.131	30/05/2018	South, near outfall source
Harve des Pas	HP	49.177	-2.100	29/05/2018	South beach
St Catherine's	SC	49.228	-2.024	29/05/2018	North East sheltered bay
Greve de L'Ecq	GE	49.247	-2.202	30/05/2018	North bay
La Pulante	LP	49.190	-2.230	30/05/2018	West, near outfall
St Brelades	SB	49.185	-2.198	30/05/2018	South West bay

Table 2.1 Jersey intertidal sites sampled. Beach names are provided along with an abbreviations for the samples from each intertidal site. Exact coordinates of where the sample was collected are provided in latitude and longitude along with the date each site was sampled.

These sites were chosen to provide a spatial range across the island with varied levels of anthropogenic impact in different sites i.e. some sites are close to outfall sources, which are well-documented as sources of microplastics to the environment in the literature (Browne et al., 2011; Lourenço et al., 2017; Stolte et al., 2015). Samples were collected by the States of Jersey DoE on 29 - 30 May 2018. A total of 4 x 500 g samples were collected for each site, along a 4 m transect parallel to the tide line. Each sample was collected approximately 1 m apart to 100 mm depth.

Samples were then shipped to the National Oceanography Centre Southampton in separate sealed polyethylene bags. Upon arrival in the laboratory, sediment samples were transferred to glass beakers which had been cleaned previously in an acid wash (Hydrochloric acid; HCI) and covered in aluminium foil to minimise airbourne contamination. All samples were prepared for analysis by drying in an oven or autoclave to remove excess water content. Full drying regime details in the Appendix (Table i).

Due to time constraints imposed by an extended period of method optimisation, three sites of the eight sampled were prioritised for further analysis; Long Beach (LB), L'Etacq (LE) and St Aubins (SA). These sites were prioritised because they offered a broad spread of locations around the island. This included one western, storm-washed site, one southern site in close proximity to an outfall source, and one eastern beach within a RAMSAR site. Following the extraction of microplastics from sediment, each remaining sediment sample was recovered and transferred to a glass beaker. During grain size analysis, sediments were stored in disposable aluminium trays with paper lids.

2.3 CLAESSENS ET AL.'S METHOD

The method in this study was optimised from a method presented by Claessens et al. (2013), described below.

Claessens et al. (2013) developed a device to carry out elutriation on sediment samples, using an upward flow of water to separate lighter particles in the sediment matrix, including microplastics, from denser ones. The aim of elutriation was to achieve a sample volume reduction before undergoing floatation in high density salt solution. The device used was a PVC column, with tap water entering from the base and an aeration stone arrangement at the bottom of the column to ensure efficient separation of sediment particles. Sediment samples were washed through a 1 mm sieve into the column, then tap water should be set at 300 L hr⁻¹ and run for 15 minutes. This rate was found to be adequate to keep sand particles in the tube whilst other material, including microplastics, flowed over the edge. Lighter particulates were transported to the top of the column with the rising water, and eventually flowed out with the supernatant water. Solids were retained on a 35 µm sieve.

The second step following volume reduction through elutriation, was floatation. Solids retained on the 35 μ m sieve were transferred to a 50 mL centrifuge tube and 40 mL of high density NaI solution (1.6 g cm⁻³) was added. This was followed by vigorous manual shaking and centrifugation for 5 minutes at 3,500 g. The top layer of salt solution containing microplastics was then vacuum filtered over 5 μ m sieve. This floatation step was repeated 2 – 3 times to ensure all microplastics were extracted from the sample. Visual inspection of the filter was carried out using a dissection microscope.

Claessens et al. (2013) also carried out a method validation phase to determine the extraction efficiency of their newly developed method and compare with the method pioneered. This phase involved evaluating both techniques using sediments spiked with a known concentration of fibres or granules before subjecting these sediments to either one of the techniques. Clean sediment was obtained by subjecting sediment to several elutriations to remove all microplastics present in the sediment matrix. The microplastics used to spike the clean sediment samples were polyvinyl chloride (PVC) granules, polyethylene (PE) granules and fibres (polymer(s) unknown) that had been previously extracted from environmental sediment samples. 50 particles or fibres were used to spike each sediment sample. As mentioned previously, the results of this method validation indicated that retrieval rates for microplastics were 100 % for microplastic granules, 98 %

for fibres, and 100 % for PVC fragments, compared to 75 %, 61 % and 0 %, respectively, for the standard floatation method of Thompson et al. (2004).

2.4 THE STANDARDISED SIZE COLOUR SORTING (SCS) SYSTEM

The Standardised Size Colour Sorting (SCS) System (Crawford et al., 2017) was used to categorise all microplastics based on their size and appearance (Figure 2.2). The SCS System is able to categorise any plastic, but for the purposes of this study, only the microplastics size range (1 μ m – 5 mm) was utilised.

Step 1: Category (size)

The first step in using the SCS System was to sort plastics into categories, based on their size. Size was measured as the entire length for fibres, and the widest diameter for other microplastics. The microplastics (MP) category covers all plastics between < 5 mm – 1 mm, and the mini-microplastic (MMP) category covers all plastics between < 1 mm – 1 μ m, along their longest dimension. All MP category microplastics were measured using ImageJ.

Step 2: Type

Microplastics were then categorised based on their morphology, with five subcategories under each size category (MP and MMP). Under the MP category, spherical pieces of plastic were labelled 'Pellet' (PT), irregular shaped pieces of plastic were labelled 'Fragment' (FR), strands or filaments of plastic were labelled 'Fibre' (FB), thin sheets or membrane-like pieces of plastic were labelled 'Film' (FI), and pieces of sponge, foam, or foam-like plastic material were labelled 'Foam' (FM). Under the MMP category, spherical pieces of plastic were labelled 'Microbead' (PT), irregular shaped pieces of plastic were labelled 'Microfragment' (FR), strands or filaments of plastic were labelled 'Microfibre' (FB), thin sheets or membrane-like pieces of plastic were labelled 'Microfilm' (FI), and pieces of sponge, foam, or foam-like plastic material were labelled 'Microfilm' (FI), and pieces of sponge, foam, or foam-like plastic material were labelled 'Microfoam' (FM).

Step 3: Colour

Next, microplastics were all given an individual colour code from the listed codes in the right-hand panel on Figure 2.2.

Example: An irregularly shaped piece of plastic, 0.8 mm in length across the widest diameter, which is green in colour would be given the label 'MMP/MFR/GN' according to the SCS System.

Figure 2.2 The Standardised Size Colour Sorting (SCS) System to categorise plastic found in the environment (Crawford et al. 2017). Microplastics are first categorised by size, then type, and finally by colour to give a SIZE/TYPE/COLOUR code.

2.5 METHOD OPTIMISATION

A major portion of this research project was devoted to method optimisation. This was conducted by testing a range of adaptations to try and improve different aspects of the method put forward by Claessens et al. (2013).

2.5.1 Nested vs Single Sieves

In order to cover the full range of microplastics, it was decided that the method should be amended to extract microplastics up to 5 mm. Claessens et al. (2013) sieved their sediment samples down to 1 mm before elutriation, therefore only microplastics < 1 mm were considered. The use of nested sieve filters, at 1 mm and 38 μ m apertures, was tested for the elutriation step to keep these larger and smaller size fractions of microplastics separate from the outset. The outcome of these tests indicated that nothing was gained from adding an additional mesh to the sieve (1 mm), as very little material was retained > 1 mm, and the size of larger particulates could be confirmed using visual microscopy with the use of a single sieve to retain material following elutriation. Therefore a single sieve at 38 μ m was used, as in Claessens et al. (2013).

2.5.2 Considerations for microplastics < 38 µm

A protocol to recover microplastics < 38 μ m was researched, and tested, where possible. It was hoped that an additional size range of 1.2 – 38 μ m could be quantified using an amended method. This size range of microplastics is the most likely to impact on benthic species important to Jersey's commercial fisheries, such as the Pacific Oyster (*Crassostrea gigas*) and the King scallop (*Pecten maximus*). This is due to their similar size to filter-fed particulate matter, making these smaller microplastics more likely to be ingested by these species via filtration (Brillant and MacDonald, 2000; Sussarellu et al., 2016; Van Cauwenberghe and Janssen, 2014).

I. Smaller Mesh for Elutriation

Due to the flow rate of the elutriation ($300 \text{ L} \text{ hr}^{-1}$), it was not possible to simply add or replace the existing 38 µm mesh with a smaller mesh. This is because the flow rate would be likely to exceed the filtration rate at such a small aperture (1.2 µm), and more markedly so with the accumulation of material on the filter throughout the process of elutriation. This would therefore greatly increase a risk of overspill, resulting in sample loss. Other protocols to tackle this size range were therefore considered.

II. Vacuum Filtration of Collected Water

One protocol was tested, which involved vacuum filtration of the water that had been through an elutriation step. A 200 L glass tank was cleaned (rinsed thoroughly with tap water) and used to collect the 75 L of water which had been through elutriation. Foil was used to cover the tank to reduce airbourne contamination. This water was then vacuum filtered onto several 1.2 μ m glass fibre filters to retain particulates (including microplastics) between 1.2 – 38 μ m. This additional step added approximately 15 hours to a 1 hour protocol, per sample. Furthermore, this method was subject to additional contamination on account of the length of time taken to complete the filtration, which allowed for dust to settle out and contaminate the water in the tank overnight. This protocol was therefore discarded, on account of its time-consuming nature and unreliability of the data collected due to contamination.

III. Tangential Flow Filtration

Another protocol was considered, but was not possible to test within the scope of this project. This proposed the use of a Tangential Flow Filtration (TFF) system, which has been used in previous studies to separate microbes and viruses from marine water samples (Cai et al., 2015). It was suggested that this principle could be used to separate microplastics from water samples, specifically from the water which had undergone elutriation. Unfortunately it was not possible to source a TFF System within the scope of this project.

The results of this research indicated that the options for processing microplastics < 38 μ m were limited, and difficult to apply to Claessens et al.'s method (2013). Therefore it was decided that only microplastics > 38 μ m would be considered.

2.5.3 Low Cost, High Density Salt Solution

The approximate costs to make salt solution with 1.5 g cm⁻³ density are £35.10 L⁻¹ for ZnCl₂ and £172.95 L⁻¹ for Nal (Coppock et al., 2017). Due to the considerable difference in material costs, yet relatively similar density that could be achieved, ZnCl₂ solution (1.5 g cm⁻³) was chosen as the floatation medium, in substitution of Nal solution (1.6 g cm⁻³), which was used by Claessens et al. (2013).

2.5.4 Transferring Retained Solids to Zinc Chloride Salt Solution

Claessens et al. (2013) state that the step following each elutriation is to transfer the solids to a 50 mL centrifuge tube for the floatation step. However, it is not explicitly detailed in the paper how to do so. Therefore several different protocols were considered.

I. Scrape Material off Filter

Firstly, the use of a metal implement to scrape material from the filter to the centrifuge tube was considered. This protocol, or similar, was assumed to be the method used by Claessens et al. (2013), despite the ambiguity of the transfer method detailed in the paper, hence was the first to be considered. As this method would rely on visual inspection of the filter to ensure all material was transferred, it was deemed to add an unnecessary potential loss step for smaller microplastics, which are difficult to see with the naked eye and thus ensure their transfer to the tube. Therefore other protocols were considered which involved transferring the filter to the tube along with any retained solids.

II. Add Whole Filter to Tube

A second consideration was to transfer the filter as a whole to the tube. However, as the circular filter had 15 cm diameter, it needed to be folded before adding it to the tube. This meant that it was difficult to achieve a transfer without trapping retained material (including microplastics) within the folds of the filter, thus reducing the extraction efficiency of the floatation step. This protocol was therefore deemed impractical.

III. Cut Up and Add Filter to Tube

In this protocol, filters were cut up before floatation was performed. Firstly, any visible material retained on the filter was scraped into the tube using a clean metal spatula. Then the filters were cut into approx. 0.5 - 1 mm pieces in a clean glass container being added to the centrifuge tube. This aimed to reduce the potential for microplastics being trapped during floatation whilst ensuring that the majority of retained material was transferred to the centrifuge tube.

Protocol III. was used for all subsequent ZnCl₂ floatation steps for sample analysis.

2.5.5 Blanks Using Water of Different Origin and Purity

Blanks were carried out using different water mediums, to determine which would be the most suitable for the method by minimising contamination. The water mediums tested were of different origins and purity, and included sea water (filtered through sand to remove large particulates), tap water and reverse osmosis (RO) water. Three blanks were carried out, for each water medium, through the full method protocol (without a sediment sample). Microplastic contamination on the filters following the blanks being carried out was categorised using the SCS System. Based on the results of these tests

(section 3.1), tap water was chosen as the water medium to take forward for spiked sediment testing and sample analysis. Incidentally, this is the same water medium used by Claessens et al. (2013).

2.6 **MINIMISATION OF CONTAMINATION**

Microplastics tend to be present in laboratory settings in the form of airbourne fibres and other small particulates, which settle on equipment and surfaces and can contaminate samples (Wesch et al., 2017). Several measures were therefore put in place to minimise microplastic contamination throughout the laboratory experiments. Sediment samples were stored in clean glass beakers and covered with aluminium foil to block airbourne contaminants. The elutriation column was cleaned before the first use and in between each elutriation. This involved removing the bolts at the base of the column so the upper tube could be removed. The residual sediment on the base sieve was then removed and the sieve rinsed thoroughly with tap water, as were the air stones. The column was also rinsed thoroughly with tap water before being reassembled and filled with tap water supplied from the base. This water entered the column base at a flow rate of 300 L hr⁻¹ as in the elutriations, but without a sediment sample or the retainer sieve. The tap water was left to flow out from the column brim for 5 minutes to wash out any residual material from the inner tube. During each elutriation, an aluminium foil lid covered the top and outflow opening of the column to reduce airbourne contamination. A new 38 µm mesh was replaced on the retainer sieve for every elutriation. Mesh for the retainer sieve was prepared in bulk ahead of time and wrapped in aluminium foil. When used mesh sieves were removed from the retaining filter assemblage, they were folded in half on a sheet of blue roll to remove excess moisture then wrapped in aluminium foil. Fresh1.2 µm glass fibre filters were used for each individual sample and #centrifugation during the floatation step. All filters used were made of stainless steel (elutriation) or glass fibre (floatation) to avoid additional sources of plastic contamination. Used glass fibre filters were stored in individual petri dishes and sealed with tape around the lid to prevent airbourne contamination.

2.7 AMENDED METHOD PROTOCOL

Following the method optimisation phase, an amended method protocol was established for the extraction of microplastics from sediment samples.

2.7.1 Volume Reduction via Elutriation

A custom-made PVC column was made to the specification of Claessens et al. (2013) to carry out elutriation on sediment samples (Figure 2.3). The column and airstones were cleaned with tap water prior to use. A 500 g dry sediment sample was washed through

a 5 mm mesh into a 2 L beaker to remove larger particles from the sediment, then carefully washed into the elutriation column from the top. Airstones were then turned on and placed into the column from the top, and the column openings were covered with aluminium foil (without blocking the supernatant outflow) to reduce airbourne contamination. Tap water flow rate was measured to 300 L hr⁻ ¹ using a measuring flask and timer (12 second to fill up to the 1 L mark). The tap water was then supplied to the column via a pipe attached to the base. Elutriation was carried out for 15 minutes from the time the supernatant water started to exit the overflow, with lighter solids (including microplastics) being retained on the 38 um (retainer sieve). During elutriation, the filter was monitored to ensure retained

Figure 2.3 Elutriation column schematic, amended from Claessens et al. (2013).

material did not block the flow of water and cause an overflow. At the end of the 15 minute elutriation, the tap water supply was removed from the base of the column and water allowed to flow out. Remaining sediment was retained on the base sieve, and was retrieved by removing the column from the base. Lighter solids that were retained on the retainer sieve were removed with the mesh from the retainer sieve holder. The mesh was carefully folded in half to keep solids from being inadvertently lost, then placed on a piece of blue roll to remove excess moisture and wrapped in aluminium foil.

2.7.2 Floatation using 7M Zinc Chloride Salt Solution

Following volume reduction of a sample through elutriation, microplastics were extracted from the material retained on the 38 μ m sieve using 7M zinc chloride solution (ZnCl₂) (1.5 g cm⁻³).

Preparation of ZnCl₂ solution was carried out in a fume cupboard and was made to the specifications of (Coppock et al., 2017). 1 L of Milli-Q ultrapure water was added to a 5 L conical flask. Following this, ZnCl₂ powder (Arcos Organics Zinc Chloride 98+% extra pure) was weighed out to 972 g in a fume cupboard, then added to the Milli-Q water. This was then manually stirred for approximately 5 minutes (or until all solids had visibly dissolved). The process of dissolving the salt powder in water resulted in an exothermic reaction, thus the solution was left in the fume cupboard for 60 minutes to cool. The ZnCl₂ solution was then vacuum filtered using 1.2 µm glass fibre filters to remove any undissolved salt crystals. Prepared ZnCl₂ was stored in 50 mL centrifuge tubes in batches of 40 mL, ready for floatation.

The solids and 38 µm sieve filter were then transferred to a 50 mL centrifuge tube filled with 40 mL 7M ZnCl₂ solution using the method described in section 2.5.4 (III. Cut Up and Add Filter to Tube). This was followed by vigorous manual shaking and centrifugation for 5 minutes at 3,500 g (Hettich Zentrifugen Rotana 460R. Settings: 18°C; 3,500 g; 05:00). The top layer of salt solution (containing microplastics) was then vacuum filtered over 1.2 µm sieve using glass pipettes that been altered so that the wider aperture end could be used to collect larger material floating in the salt solution. This floatation step was repeated 2 times to ensure all microplastics were extracted from the sample.

2.7.3 Visual Sorting using Light Microscopy

Visual inspection of the filter was carried out using a dissection light microscope (Olympus BH-2) and a photographic catalogue was kept of each section of the filter where microplastics were present using a Nikon D5000 camera. Microplastics were sorted according to the SCS System (section 2.4) (Crawford et al., 2017). Details of the microplastics observed were catalogued in an Excel spreadsheet for each sample, which included the date, photo number, sample (site and #repeat), #centrifugation, size (MP/MMP), type (morphology), colour, count (# microplastics of the same SCS code), and exact size for microplastics > 1 mm (MP only).

2.8 SPIKED SEDIMENT EXTRACTION EFFICIENCY TESTS

Bulk sediment for the spiked sediment tests was collected at Hayling Island, (50°47'37.5"N, 1°01'29.9"W). Prior to being spiked, sediment was put through several elutriations to remove any microplastics present, before being dried at 60 °C for 24 hrs. Clean dry sediment was then weighed out to 500 g samples and stored in glass beakers covered in aluminium foil, ready to be spiked with a known amount of microplastics. Three polymer types were used for the spiked sediment tests; nylon/ polyamide (PA), polystyrene (PS) and polyvinyl chloride (PVC) (Table 2.2). These polymer types were used as they are commonly found in marine sediments (Table 1.1). PS and PVC microplastics were created using a band saw to cut fragments and microfragments from larger plastic items (PS coffee cup lid/ tray and PVC column offcut). PA microplastics were created by distressing tulle fabric to create fibres and microfibres. Microplastics were sorted into MP and MMP size fractions by sieving through a 1 mm mesh, then collecting the different size fraction in glass vials. Three sediment samples were used for the spiked sediment tests, with a different polymer in each sample. Each sediment sample was spiked with 50 x MP and 50 x MMP of a polymer type, to a total of 100 microplastics, which were counted out with the aid of a dissection microscope and fine tweezers. Spiked sediments were then put through the full amended method to determine the extraction efficiency by the amount of microplastics extracted.

Polymer name	Symbol	Density (g cm ⁻³)	Common sources for microplastics in the marine environment	Plastic item(s) used	Microplastics created
Polystyrene (PS) 1		1.05	Packaging foam, food containers, plastic tableware, disposable cups, plates, cutlery, building insulation	White coffee cup lid & white tray	FR and MFR
Polyvinyl Chloride (PVC)	A PVC	1.38	Plumbing pipes and guttering, shower curtains, window frames, flooring, films	Grey elutriation column offcut	FR and MFR
Polyamide/ Nylon (PA)	ු	1.15	Discarded fishing gear, toothbrush bristles, car engine mouldings, films for food packaging	Fluorescent yellow tulle fabric	FB and MFB

Table 2.2 Polymers used in spiked sediment tests. Density and common sources from Li et al. (2016).

2.9 GRAIN SIZE ANALYSIS

Grain size analysis was carried out on all sediment samples that had been through the elutriation protocol. Samples were dried for 24 hours at 60°C, then separated using nine stacked sieves on a shaking plate for 10 minutes. Sieves decreased in pore size from 1 mm to 63 μ m (0 – 4 ϕ in fractions of 0.5 ϕ). Sediment retained on each of the sieves was weighed and recorded in a spreadsheet. This data was then analysed using GRADISTAT Version 8.0 (Blott and Pye, 2001) to provide mean grain size, % loss of sediment sample weight and an overall sediment description.

3.1 SEAWATER, TAP WATER AND REVERSE OSMOSIS WATER BLANKS

Contamination on the blanks varied with the use of three water sources of different origin and purity (Table 3.1). The initial count of particles retained on glass fibre filters included all particles visible at 4 x magnification under the light microscope ('All'). However, the technique of visual microscopy to identify microplastics becomes increasingly subjective with decreasing particle size. Therefore small dark fragments smaller than 100 μ m (listed as MMP/MFR/DK under the SCS System) were disregarded from the data to remove some speculation of whether particles are of plastic origin ('> 100 μ m'). In addition, a count for microplastics larger than 1 mm observed was conducted ('> 1 mm') to indicate the split of large (1 – 5 mm) and small (< 1 mm) microplastics found in the blanks ('Ratio of Large vs Small Microplastics').

Water medium	Repeat	Total microplastic particle count (2 x filters)			Ratio of Large vs Small Microplastics
		All	> 100 µm	> 1 mm	> 1 mm : 100 µm – 1 mm
Sea water	1	453	83	11	11 : 72
	2	1143	293	9	9:284
	3	792	282	2	2 : 280
	Mean	796	219.3	7.3	7.3 : 212
Tap water	1	221	131	9	9 : 122
	2	330	160	2	2 :158
	3	244	54	6	6:48
	Mean	265	115	5.7	5.7 : 109.3
Reverse osmosis	1	624	385	17	17 : 368
(RO) water	2	195	145	2	2 : 143
	3	296	166	1	1 : 165
	Mean	371.7	232	6.7	6.7 : 225.3

Table 3.1 Results from the blanks, run using three water sources of different origin and purity. Three repeats were carried out with each water source; sea water, tap water and reverse osmosis (RO) water. The initial total of observed particles is listed (All), along with those larger than 100 μ m (> 100 μ m) and those larger than 1 mm (> 1 mm). A ratio of large:small microplastics is also provided (> 1 mm : 100 μ m – 1 mm).

The mean average counts of particles observed, in all three size categories, indicated that the use of tap water for elutriation resulted in the least contamination, compared to sea water and reserve osmosis (RO) water. In addition, the contamination of blanks carried out with tap water was more consistent across the three repeats, with a lower standard deviation (\pm 54.8), compared to that of sea water (\pm 118.2) and RO water (\pm 132.9). Therefore, tap water was used for all subsequent elutriations.

3.2 SPIKED SEDIMENT EXTRACTION EFFICIENCY TESTS

The results of the method validation tests using spiked sediment gave a mean average extraction efficiency of 31% with one elutriation and two subsequent extractions via floatation (Table 3.2). This is in contrast to the results of the method validation phase of the study by Claessens et al. (2013), which indicated an extraction efficiency of 98 – 100% following one elutriation of spiked sediment containing 50 microplastics (fibres, granules or PVC particles), and three subsequent extractions.

Of the three polymer types, PA fragments had the highest extraction efficiency (41%), followed by PVC fragments (30%) and PS fibres (23%). Conversely, Claessens et al. (2013) used PVC granules, PE granules and fibres previously extracted from the environmental sediment samples (polymer(s) unknown) to spike sediment, and noted little difference in extraction efficiency observed between polymer types.

The extraction efficiencies for MFR and FR (50 of each in each spiked sample) differed greatly, with 36% for PVC MFR and 44% for PS MFR, and 16% for PVC FR and 10% for PVC FR. This was a 2.8-fold, and 3.6-fold, decrease between the extraction efficiency of MFR and FR of PVC, and PS, respectively. For PA fibres, however, the extraction efficiency for MFB and FB was very similar (42% and 40%, respectively). The method developed by Claessens et al. (2013) sieved sediment to < 1 mm, removing all large debris, thus MP were removed from sediment samples before analysis was carried out.

Polymer	Туре	Small microplastics 40 μm – 1 mm (%)	Large Microplastics 1 – 5 mm (%)	Mean extraction efficiency (%)
PVC	Fragments (FR/MFR)	44	16	30
PS	Fragments (FR/MFR)	36	10	23
PA	Fibres (FB/MFB)	42	40	41
Mean extra efficiency	action (%)	41	22	31

Table 3.2 Extraction efficiencies of the method using microplastics of different polymer type and size. Efficiencies were determined by running sediment spiked with 100 pieces of microplastic (one polymer type; 50 MMP, 50 MP) through one elutriation and two subsequent extractions using saturated zinc chloride salt solution.

3.3 JERSEY INTERTIDAL SEDIMENT SAMPLE ANALYSIS: INITIAL OBSERVATIONS

Jersey sediment samples from St Aubins (SA), L'Etacq (LE) and Long Beach (LB) were subjected to the full method protocol to determine their microplastic content. Visual microscopy revealed some initial observations of the material extracted from these three intertidal sites.

3.3.1 Abundance of Material on St Aubins (SA) Filters

A high volume of material was retained following each elutriation of sediment samples from St Aubins (SA). The volume of material retained was sufficiently high to justify separating the bulk of material retained and cut up filter into two different centrifuge tubes, as the two parts would not fit into a 50 mL tube together (as the method dictates). These floatations resulted in a retention of substantially higher volumes of material on the glass fibre filters when compared to the other beaches analysed. Upon inspection under the light microscope, the majority of particulates retained appeared to be biological in nature (Figure 3.1). Foraminifera (forams) were the most commonly observed items, with forams in the Class Miliolata (with mutil-chambered shells) appearing most frequently (Figure 3.1, i). Fibrous material (likely of plant origin) and bivalves (likely juvenile *Mytilus edulis*) were also commonly observed throughout the filters (Figure 3.1, ii). Microplastics did

Figure 3.1 Particulate material retained on filters from St Aubins sediment samples. Photo i) Material includes foraminifera (forams), along with some bivalve shell(s) and unidentified fibrous material. Photo ii) Light from below highlights morphological features of retained material, including forams (likely class: Miliolata; identified by their multichambered shells). Photo iii) Large fragment (possibly of synthetic polymer origin) covered in multiple layers of particulate biological material. Photo iv) Black plastic microfragment and microfibre intersperse biological material.

appear to be present (Figure 3.1, iii), however, the sheer volume of material created an issue with overlap of particulates (Figure 3.1, iv). This was deemed likely to result in a number of microplastics being missed from the particulate count. In addition, it was difficult to differentiate forams and other biological material from microplastics without using further separation techniques or more advanced microscopy techniques. Therefore SA samples were unable to be analysed further to determine their microplastic content.

3.3.2 Total Counts of Particles on Filters

Particles extracted from Long Beach (LB) and L'Etacq (LE) sediment samples were visually sorted following the extraction of microplastics from sediment samples using the amended method. Microplastics were observed under a light dissection microscope and assigned a code using the SCS System (detailed in section 2.4). A photographic catalogue was recorded for each filter observed under the microscope. Microplastics that looked to be close to or above 1 mm were measured to confirm their size and allow microplastics to be split into two size fractions; large microplastics (MP, 1 - 5 mm) and mini-microplastics (MMP, < 1 mm).

An initial count of microplastics included small fragments of indiscernible colour (< 100 µm), which were listed as MMP/MFR/DK. Following this initial count, the total number of microplastics observed across the two beaches was 18,574 for 2 kg of sediment. The total for 1 kg of LB sediment was 11,571 microplastics, and for 1 kg of LE sediment was 7,002 microplastics. The two repeats for LB yielded very different counts, with 8,929 particles in LB1 and 2,642 particles in LB2 (500 g sediment each), whereas the two repeats for LE yielded similar results (3,775 and 3,227 particles in LE1 and LE2, respectively, from 500 g sediment). However, the characteristics of the particulates that had been labelled MMP/MFR/DK were difficult to distinguish, on account of their small size. This made it very difficult to rule out biological or mineral origin and verify synthetic polymer origin for these fragments. MMP/MFR/DK were therefore removed from further analyses, and the above totals were disregarded due to ambiguity of data for microplastics < 100 µm. The total counts were recalculated for microplastics > 100 µm. to reduce ambiguity and improve the reliability of the data. The results of this secondary count revealed a total count of 2,827 microplastics extracted from 2 kg sediment across both beaches. The total for 1 kg of LB sediment was 1,473 microplastics, and for 1 kg of LE sediment was 1,354 microplastics. The two repeats for LB yielded different counts, with 849 microplastics in LB1 and 624 microplastics in LB2 (500 g sediment each). Similarly, the two repeats for LE yielded counts of 574 microplastics in LE1 and 780 microplastics in LE2 (500 g sediment each).

3.4 CHARACTERISTICS OF MICROPLASTICS ON JERSEY BEACHES

Microplastics > 100 μ m from LE and LB were individually labelled with codes using the SCS System. The results of microplastics SCS System classification are summarised below, covering each classification, size, morphology and colour.

3.4.1 Size

Microplastics were categorised into two size classes; large microplastics (MP), between 1-5 mm, and mini-microplastics (MMP), between $100 \ \mu\text{m} - 1$ mm. MP constituted 1.2% (33 microplastics of 2,827) of the material observed under the microscope from LE and LB samples, with MMP constituting the other 98.8% (2,794 microplastics of 2,827). This indicates that just over 1 MP was observed in every 100 microplastics between 100 $\mu\text{m} - 5$ mm. The trends observed were similar when comparing the two sites together and separately.

3.4.2 Morphology

One of ten individual morphology codes under the SCS System were applied to each microplastic observed (Table 3.3). Of the ten codes, three were not observed at all across all samples analysed, which included PT (pellets, 1 - 5 mm), FI (film, 1 - 5 mm) and FM (foam, 1 - 5 mm). In addition, FR were not observed in LB samples. The majority of MP were FB across both intertidal sites. The most common MMP observed were MFR, which constituted 85.0% of LB microplastics and 84.1% of LE microplastics. In both LB and LE samples, the next most common MMP were MFB (7.8 & 5.8 %, respectively). MFM constituted 0.1% of LB microplastics and 1.8% of LE microplastics. MBD were observed less in LE than LB (1.5 & 3.1 % respectively) whereas MFI were observed less in LB than LE (3.0 & 5.6 % respectively).

Intertidal Site	Microplastic Morphology Code							
	1 – 5 mm		100 μm – 1 mm					
Long Beach (LB)	FB	FR	MBD	MFB	MFI	MFM	MFR	Total
Count (> 100 µm)	17	0	45	115	44	1	1250	1472
Proportion (%)	1.2	0.0	3.1	7.8	3.0	0.1	85.0	100
	1 – 5 mm		100 µm – 1 mm					
L'Etacq (LB)	FB	FR	MBD	MFB	MFI	MFM	MFR	Total
Count (> 100 µm)	14	2	21	80	77	24	1151	1369
Proportion (%)	1.0	0.1	1.5	5.8	5.6	1.8	84.1	100

Table 3.3 Profile of morphology types for microplastics > 100 μ m from Jersey intertidal sediments (2 x 500 g samples). Microplastic morphology codes are from the SCS System. A count for each morphology code is listed, along with the proportion (%) that each morphology code contributes to the total microplastics count.

3.4.3 Colour

18 different colour classifications under the SCS System were observed at levels higher than 0.5 % of microplastics per site sample. A photographic example of each of these colour classifications is provided in Figure 3.2, (i) – (xviii), in alphabetic order. In addition to exhibiting the full range of colours observed during sample analysis, a range of different microplastic sizes and morphologies are shown. All photographs are of microplastics extracted from LB or LE samples. A full account of the photo number and date corresponding to each photograph, along with the specific filter the microplastic was observed on, is detailed in the Appendix.

(i)	Beige (BG)	(ii)	Black (BK)	(iii)	Blue (BL)	(iv)	Brown (BN)
	20	P.		1	\sim	4	10
	200 μm		200 µm	1.1.1	300 µm	-	300 µm
(v)	Clear (CL)	(vi)	Green (GN)	(vii)	Grey (GY)	(viii)	Metallic (MT)
			~		4		100
A. traff	300 μm		200 μm	- 27	500 µm		100 μm
(ix)	Olive (OL)	(x)	Orange (OR)	(xi)	Pink (PK)	(xii)	Red (RD)
				~	12:		1 stores
	200 μm		300 μm	Sept.	500 μm		200 μm
(xiii)	Speckled (SP)	(xiv)	Transparent (TP)	(xv)	Turquoise (TQ)	(xvi)	Violet (VT)
120		1		Sel.	- 11		
10		1.0	14 - A		1.14		
	500 μm	-2-10	100 μm	1.10	200 µm	1005	500 µm
(xvii)	White (WT)	(xviii)	Yellow (YL)	Figure 3 colours of Each ph presente for micro	.2 Examples of micro under the SCS Sys totograph is labelle d and a suitable sca plastics in the photo	oplastics cl stem using ed with th ale. The so graphs are	assified as different g light microscopy. le colour example specific SCS codes e: (i) MMP/MFR/BG
_	300 µm		300 µm	(ii) MMP	/MBD/BK (iii) MMF	P/MFB/BL	(iv) MMP/MFR/BN

(v) MMP/MFR/CL (vi) MMP/MFB/GN (vii) MMP/MFR/GY (viii) MMP/MFR/OL (x) MMP/MFR/OR (xi) MMP/MFB/PK (xii) MMP/MFB/RD (xiii) MMP/MFR/SP (xiv) MMP/MFR/TP (xv) MMP/MFB/TQ (xvi) MP/FB/VT (xvii) MMP/MFM/WT (xviii) MMP/MFR/YL.

The percentage of different colours observed in each intertidal site is shown in Figure 3.3. A range of colours were observed across LB (i) and LE (ii) samples. The colour composition of microplastics extracted from each site were somewhat similar. In both LB and LE samples, over half of the microplastics observed fell under three colour categories. For LB samples, 52.0 % of microplastics were either brown (BN), black (BK) or grey (GY). For LE samples, 55.9 % of microplastics were BN, BK, or orange (OR). In

Figure 3.3 Percentage of different colours observed in microplastics > 100 μ m extracted from Jersey intertidal sediments LB and LE. (i) Colours of 1,473 microplastics extracted from LB sediment samples (2 x 500 g). Other category includes: opaque (OP), charcoal (CH), metallic (MT) and purple (PR). (ii) Colours of 1,354 microplastics from LE sediment samples (2 x 500 g). Other category includes: olive (OL), green (GN), violet (VT), purple (PR), opaque (OP), and charcoal (CH).

both LB and LE samples, BN was the most commonly observed colour (20.3 & 30.1 %), followed by BK (18.1 & 14.6 %). Turquoise (TQ) and red (RD) microplastics constituted similar proportions in LB and LE samples, with 1.3 & 1.7 % TQ and 1.4 & 1.3 % RD microplastics observed across the two sites. Common rare colours observed in both sites ('Other': < 0.5 % of site samples) were opaque (OP), charcoal (CH), and purple (PR).

There were also some differences observed between LB and LE samples. More than double the proportion microplastics were blue in LB compared to LE (10.9 and 5.3 %). The difference in proportion of white microplastics was even more pronounced, constituting 4.8 % of LE microplastics and 1.1 % of LB microplastics. In addition, whilst abundance of each colour did not differ substantially and was generally similar between sites, the order of colours, from most common to least common, was different in each site (colours are listed in order according to % composition in Figure 3.3 (i) and (ii)).

3.4.4 Size and Characteristics of Large Microplastics (MP)

MP constituted 1.2 % of the material observed under the microscope from LB and LE samples (Table 3.3). Of these MP, most were fibres of various colours (93.9 %) and the others were brown fragments (6.1 %).

Sample	Description	SCS Code	Size (mm)	Sample	Description	SCS Code	Size (mm)
Long Beach (LB)				L'Etacq (LE)			
LB2 C2	Black fibre	MP/FB/BK	1.053	LE1 C2	Black fibre	MP/FB/BK	1.236
LB1 C2	Blue fibre	MP/FB/BL	1.001	LE1 C1	Blue fibre	MP/FB/BL	1.177
LB2 C1	Blue fibre	MP/FB/BL	1.130	LE1 C2	Blue fibre	MP/FB/BL	1.276
LB2 C1	Blue fibre	MP/FB/BL	1.188	LE1 C2	Blue fibre	MP/FB/BL	1.291
LB2 C1	Blue fibre	MP/FB/BL	1.280	LE1 C2	Blue fibre	MP/FB/BL	1.339
LB2 C2	Blue fibre	MP/FB/BL	1.287	LE1 C1	Blue fibre	MP/FB/BL	1.886
LB1 C1	Blue fibre	MP/FB/BL	1.325	LE1 C1	Brown fragment	MP/FR/BN	2.846
LB2 C2	Blue fibre	MP/FB/BL	1.728	LE1 C1	Brown fragment	MP/FR/BN	1.025
LB2 C2	Blue fibre	MP/FB/BL	1.812	LE1 C2	Grey fibre	MP/FB/GY	2.635
LB2 C2	Blue fibre	MP/FB/BL	2.020	LE2 C2	Pink fibre	MP/FB/PK	1.006
LB2 C2	Green fibre	MP/FB/GN	2.751	LE1 C1	Purple fibre	MP/FB/PR	2.914
LB2 C2	Green fibre	MP/FB/GN	3.108	LE2 C2	Turquoise fibre	MP/FB/TQ	1.160
LB2 C1	Grey fibre	MP/FB/GY	1.422	LE2 C2	Turquoise fibre	MP/FB/TQ	1.286
LB2 C2	Pink fibre	MP/FB/PK	1.223	LE2 C1	Turquoise fibre	MP/FB/TQ	2.329
LB1 C1	Pink fibre	MP/FB/PK	1.234	LE1 C1	Violet fibre	MP/FB/VT	1.002
LB2 C2	Pink fibre	MP/FB/PK	1.702	LE1 C1	Violet fibre	MP/FB/VT	2.503
LB1 C1	Turquoise fibre	MP/FB/TQ	1.335				

Table 3.4 Detailed catalogue of microplastics > 1 mm. Microplastics are listed under the intertidal sediment they were extracted from, with the specific sample (LB1, LB2, LE1 or LE2) and #centrifugation (C1 or C2) given in the left-hand column. The description gives the same information as the SCS code in a more digestible format in the centre two columns. Each microplastic was measured along the longest diameter (fragment) or length (fibre) three times using ImageJ, with the mean average listed in the right-hand column.
MP from LE samples ranged between 1.002 - 2.914 mm in length. Of these microplastics, 14 were fibres (FB) and 2 were fragments (FR). Blue (BL) was the most common colour (5 FB), followed by turquoise (TQ) (3 FB). MP from LB samples ranged from 1.001 - 3.108 mm in size. All 17 of these microplastics were fibres. BL was the most common colour (9 FB), followed by pink (PK) (3 FB).

3.5 ESTIMATES FOR MICROPLASTIC CONTAMINATION IN THE ENVIRONMENT

In order to estimate the true concentrations of microplastics in sediment from each site, it was necessary to apply known constraints to account for external contamination and method extraction efficiency. The two repeats for each site (i.e. LB1 and LB2) were analysed separately. First, the mean average contamination was subtracted from the total count for microplastics > 100 μ m on a sample. The mean average contamination

was 115 microplastics per sample $(\pm 54.78 \text{ SD})$, determined from the tap water blanks. Following this, the mean average extraction efficiency was applied to the residual microplastics observed after an assumed level of contamination had been removed from the count. The mean average extraction efficiency for the method was $31\% (\pm 9 \% SD)$, determined from the spiked sediment tests. Finally, the resulting value was doubled to give the value applicable to 1 kg sediment to fit the units (MP kg⁻¹ DW). Applying the effects of contamination (± SD) & extraction efficiency (± SD) and fitting to the units resulted in nine estimate values for microplastic concentrations for each replicate, and a total of 18 estimates per site.

Figure 3.4 Box plots showing the estimate microplastic concentration in Jersey intertidal sediments. Units are presented as microplastics per kilogram of dry sediment (MP kg⁻¹ DW). Calculated estimates are based on an application of standard contamination (\pm SD) the extraction efficiency (\pm SD). The red dashed line indicates the mean average, the black line in the centre of each box is the median.

These data are presented for each site as box plots (Figure 3.4). The range of values obtained for LB was 2,248.2 – 7,081.1 MP kg⁻¹ DW, whilst the range for LE was 2,000.7 – 6,467.2 MP kg⁻¹ DW. The mean average concentration of microplastics (100 μ m – 5 mm) in LB sediments was estimated to be higher than that of LE sediments. The mean average for LB was 4,209 (± 1,377) MP kg⁻¹ DW and the mean average for LE was 3,806 (± 1,258) MP kg⁻¹ DW.

3.6 GRAIN SIZE ANALYSIS AND SAMPLE LOSS

Grain size analysis was carried out for all sediments put through elutriation (Table 3.5). This included three sediment samples (collected at Hayling Island) used for spiked sediment tests with three different polymers (PA, PS and PVC), and 2 repeat samples from each of the three Jersey intertidal sites analysed (LB, LE and SA). Sediments were sieved through a 5 mm mesh prior to elutriation and some material > 5 mm was retained for most samples. Therefore grain size analysis results would have been slightly different if conducted before elutriation. However, the primary purpose of grain size analysis was to quantify the grain size of sediments as they would have been during elutriation, not as it was when collected from the environment. Additional contamination from stacked sieves and other equipment is a further reason this analysis was not carried out before Spiked sediment samples (SPA/SPS/SPVC) were given the description elutriation. 'moderately well-sorted, fine sand', and were very similar in composition, with close mean grain sizes and % sand and mud content. This was expected, as these three samples were sourced from the same location. Similarly, the repeat samples for each Jersey intertidal site (LB1/LB2, LE1/LE2, SA1/SA2) had similar mean grain sizes and sand/mud

Sediment	Mean gi	rain size	Sand (%)	Mud (%)	Loss (%)	Overall sediment description
Sample	μm	φ				
SPA	191.3	2.341	100.0	0.0	1.8	Moderately well sorted, fine sand
SPS	192.0	2.355	99.9	0.1	1.5	Moderately well sorted, fine sand
SPVC	188.2	2.365	99.9	0.1	3.1	Moderately well sorted, fine sand
LB1	329.0	1.751	100.0	0.0	1.3	Moderately sorted, medium sand
LB2	319.2	1.768	100.0	0.0	2.4	Moderately sorted, medium sand
LE1	201.9	2.355	100.0	0.0	51.6	Very well sorted, fine sand
LE2	205.5	2.328	100.0	0.0	2.8	Very well sorted, fine sand
SA1	104.1	3.309	98.2	1.8	11.2	Very well sorted, very fine sand
SA2	104.5	3.301	98.6	1.4	18.9	Very well sorted, very fine sand

Table 3.5 Grain size analysis results. Samples from the spiked sediment tests are prefixed with 'S', followed by the abbreviation for the polymer used to spike the sample. Samples from Jersey intertidal sites are prefixed with the site abbreviation, followed by the number repeat. The arithmetic (μ m) and logarithmic (ϕ) mean grain size is provided for each sample, along with sand and mud content (%), overall sample loss from elutriation and sieving (%), and an overall sediment description.

content between repeat 1 and 2. However, the sediment description differed between the three sites. LB1 and LB2 were given the description 'moderately sorted, medium sand'. LE1 and LE2 were given the description 'very well sorted, fine sand'. SA1 and SA2 were given the description 'very well sorted, very fine sand'. Each sample was 500 g DW prior to elutriation. Therefore grain size analysis allowed for the change in dry weight of sediment samples to be documented. The percentage loss in dry weight of sediment is presented in the 'Loss (%)' column of Table 3.5. The loss for LE1 appears to be an outlier, at 51.6 %, compared to an average loss of 5.4 % for all other samples. The loss of SA samples appear to be substantially higher than others in the data set (not including the 51.6 % outlier of LE1).

Full details of grain size analysis and the resulting data set is provided in the Appendix.

4 DISCUSSION

4.1 MICROPLASTICS IN JERSEY INTERTIDAL SEDIMENTS

The ratio of the two size fractions of microplastics (MP:MMP) was the remarkably similar for LB and LE sediments (3:247 approx. for both). This could be indicative of the presence of a greater number of microplastics in the smaller size category (MMP) in the environment, which is consistent with the literature (see Table 1.1). However, there was a considerable difference in extraction efficiency between MP and MMP during the spiked sediment tests (22 and 41 %, respectively). This is likely to have reduced the amount of MP extracted from sediment samples and therefore contributed to the pronounced difference in counts for each size category.

Primary microplastics (PT and MBD) were rare in both sites, with the majority of microplastics appearing to be of secondary origin, with most of these in the form of MFR or MFB. Secondary microplastics occur as a result of degradation from larger plastic items. This suggests that the majority of microplastics found in Jersey sediments are the result of weathering of post-consumer plastic items present in the marine environment. The microplastics colour profiles for each site were also somewhat similar, suggesting that a similar assemblage of microplastics exist in sediments to the East and West of the island. The majority of microplastics observed in both sites were brown, followed by black. These colours are common to natural materials (biological and mineral) in the marine environment. For example, granite is particularly common in Jersey sediments and can be black in colour. This could suggest some level of misidentification during visual sorting. However, even if a marginal portion these particles are of synthetic polymer origin, this may pose a considerable threat to marine species, as black microplastics have been shown to be preferentially ingested by marine species compared to other colours (Ory et al., 2018).

Overall, the microplastics extracted from Jersey intertidal sediments appeared to be similar for western (LE) and eastern (LB) beaches. The estimate microplastic concentrations for LB and LE were marginally different (mean average $4,209 \pm 1,377$ MP kg⁻¹ DW and $3,806 \pm 1,258$ MP kg⁻¹ DW, respectively). However, as these estimates were subject to two major assumptions (external contamination levels and method extraction efficiency) the range of estimated values varied greatly. Thus it was difficult to quantify the significance of the marginal differences observed. In addition, when the estimated microplastic concentrations for intertidal sites were compared to the literature,

it was found that they were one order of magnitude (or even two) in excess of the concentrations from comparable studies. For example, two studies that quantified the microplastic concentrations of marine sediments in Belgium, and considered a similar size range of microplastics to this study (38 μ m – 1 mm), reported concentrations at 166.7 MP kg⁻¹ DW (harbour), 92.8 MP kg⁻¹ DW (beach), 17.6 MP kg⁻¹ DW (high tide line) and 9.2 MP kg⁻¹ DW (low tide line) (Claessens et al., 2011; Van Cauwenberghe et al., 2013a). Similarly, the microplastic concentrations of Slovenian marine sediments have been recorded at 177.8 MP kg⁻¹ DW (beach) and 170.4 MP kg⁻¹ DW (Infralittoral) for microplastics between 250 μ m – 5 mm. All of these reported concentrations are at least one order of magnitude lower than the estimates for Jersev intertidal sites. A study by Frère et al. (2017) considered microplastics between 0.7 µm – 1 mm and found concentrations of 0.97 MP kg⁻¹ DW in subtidal sediments from the Bay of Brest. This is very low compared to the results found for Jersey samples, particularly considering that Frère et al. (2017) included a lower limit for microplastic size that was 2 orders of magnitude smaller than the lower limit for LB and LE microplastics (0.7 µm vs 100 µm). Conversely, the differences observed between the Bay of Brest and Jersey sediments could be due to the different site sources; subtidal and intertidal, respectively. Microplastics, in particular low density polymers, are known to accumulate on beaches and thus higher concentrations of microplastics are generally found in beach sediments compared to subtidal sediments (Zhang, 2017). One study from Canada with comparable results reported microplastic concentrations on a Nova Scotia beach between 2,000 -8,000 MP kg⁻¹ (Mathalon and Hill, 2014). However, similarly to Frère et al. (2017), Mathalon and Hill (2014) consider a lower size limit for microplastics that is 2 orders of magnitude smaller than the lower limit for LB and LE microplastics (0.8 μ m vs 100 μ m), thus a greater concentration of microplastics, and not a comparable value, would be expected. These comparisons with data sourced from recent literature call into question the validity and robustness of the data obtained for Jersey intertidal sediments in this study.

With this in mind, it is of note that the amended method had a number of limitations, identified throughout the method optimisation and sample analysis phases of the research. These impacted on the validity of the data, which made it difficult to draw robust conclusions from the results, due to the level of implicit and observed variance. Therefore the remainder of this section is dedicated to a discussion around the various method limitations and suggestions for improvements where relevant.

4.2 SOURCES OF CONTAMINATION IN THE LABORATORY

Although steps were taken to minimise contamination (see section 2.6), samples were nonetheless exposed to varying levels of contamination throughout the process of laboratory analysis. This was evident from the results of blanks carried out with tap water, seawater and RO water, with filters from every blank containing microplastics in varying concentrations. It was assumed, prior to the blanks being carried out, that RO water would result in the cleanest blanks. This is because RO water is the purest water source of the three tested mediums and microplastics have been found at trace levels in tap water (Mintenig et al., 2019; Pivokonsky et al., 2018). However, the results indicated otherwise, with tap water resulting in marginally purer blanks than RO water, overall. These results suggested that any microplastics within tap water did not impact on the overall contamination levels observed between tap water and RO water. The base levels of contamination observed across tap water and RO water blanks are therefore likely to originate primarily from laboratory surfaces, equipment and airbourne microplastics. Potential sources of microplastic contamination included blue fibres leached from the nylon rope that held the elutriation column in place, grey PVC fragments from the custommade PVC elutriation column, airbourne synthetic fibres, and microplastics in dust that had settled on equipment, hoses and laboratory worktop surfaces.

Microplastics > 1 mm from blank and sample filters were compared (Table 4.1). The morphology MP of each observed was almost exclusively fibres (FB) for both the blanks and samples. In addition, total counts for each of the blanks and analyses were not markedly different.

Blank or sample analysis name	MP Count (> 1 mm)	Morphologies observed	Size Range (mm)
B1	9	FB	1.12 – 5.94
B2	2	FB	1.14 – 1.20
B3	6	FB	1.00 – 1.87
LB1	4	FB	1.00 – 1.34
LB2	13	FB	1.13 – 3.11
LE1	12	FB, FR	1.00 – 2.91
LE2	4	FB	1.00 – 1.29

Table 4.1 Comparison of microplastics > 1 mm observed on filters from tap water blanks and sample analyses. The total count of microplastics > 1 mm is provided along with the morphology codes for microplastics observed and the size range (measured using ImageJ).

The similarity to the blanks suggests that the majority of fibres observed on sample analysis filters originated from external contamination rather than from the environmental sample.

In addition, microscopic materials other than plastics may have been mistaken for microplastics under the microscope. For example, microscopic pieces of the steel 38 µm pore size filters could have been released following them being cut and placed into ZnCl₂

solution, then transferred to the glass fibre filters following the floatation step. Indeed, the results from visual microscopy indicated a small number of 'metallic' microplastics that fit the description of a microscopic steel fragment (see Figure 3.2, viii). Steel is a dense material (8.05 g cm⁻³), which should have settled at the base of the 50 mL tube following centrifugation. Therefore it is likely that any steel fragments observed occurred as a result of becoming stuck to the inside of the 50 mL tube, then accidentally removed with the supernatant ZnCl₂ solution following floatation. It remains uncertain as to whether any of the 'metallic microplastics' observed are of synthetic polymer or metal origin, as it is difficult to confirm the composition of microscopic particulates using light microscopy (discussed further in section 4.5).

In order to minimise the impacts of contamination of metal fragments, greater scrutiny of metallic coloured particles should be applied to determine their material. The larger issue of microplastics contamination from laboratory equipment, surfaces and airbourne fibres could be tackled using a forensic approach, as described by Woodall et al. (2015) (Figure 4.1). The measures to minimise and monitor contamination in this approach include, and are not limited to, monitoring the contamination in the laboratory by leaving a filter out

Figure 4.1 Forensic approach workflows for research quantifying microplastics in environmental samples (Woodall et al. 2015).

during sample analysis, wearing only cotton laboratory coats and clothing, and covering all vents with natural fibre cloth. In addition, clean air filters have been shown to reduce airbourne microfibre contamination in the laboratory by up to 96.5 % (Wesch et al., 2017). Efforts to wear only 100 % cotton laboratory coats and clothing during analysis of samples is commonplace in the more recent studies quantifying microplastics in the environment (Frère et al., 2017; Steer et al., 2017). In addition, the method could be amended to reduce the amount of plastic equipment used and thereby minimise contamination further. For example, the PVC elutriation column could be replaced with a custom-made metal or glass elutriation column.

4.3 SAMPLE LOSS

The amount of sediment collected from intertidal sites was specified at 500 g per sample, with 500 g DW required for each sediment analysis. As part of sample preparation, sediments were dried in separate containers to remove excess water content. This resulted in 63 % of the intertidal sediment samples prepared weighing less than 500 g after drying (see Appendix, Table i). For the two replicates analysed for each site, SA and LE samples were > 500 g, but one LB sample was < 500 g once dried (490.4 g DW). This sample was topped up with excess dry sediment from the other sample collected from LB (519.4 g DW). The mean average weight loss per sample after drying for all samples prepared was 14.3 %, with a maximum loss of 20.9 %. With this in mind, it would be advised for future research that additional sediment (perhaps 25 % extra, so 625 g minimum if collecting 500 g) is collected in the field in order to ensure the sample size is sufficient to carry out analysis in the laboratory.

As part of the grain size analysis, the total weight of sediment samples that had been analysed was compared to the original 500 g weight to calculate the % loss of sediment following elutriation. All samples reduced in weight to some degree. A small portion of this loss could be attributed to the loss of lighter material (including microplastics) via elutriation. This appears to have impacted SA samples (SA1 and SA2), which were observed to retain higher volumes of material on the retaining sieve. SA1 and SA2 experienced weight losses of 11.2 and 18.9 %, respectively compared to an average loss of 2.2 % in all other samples (excluding an outlier of 51 % loss). However, there are also other steps where loss could have occurred throughout the method. For example, the mesh supporting the sediment at the base of the column had 38 μ m apertures, which would have allowed sediment grains < 38 μ m to escape at the base of the column. In addition, as the supporting mesh was removed, cleaned and then replaced between

elutriations, it is possible that the sieve could have been replaced ineffectively, leaving a gap for sediment to escape. It was found that one of the samples had reduced in weight by 51 % (LE1), which was likely due to a misplacement of the base sieve mesh.

In addition to sediment loss, there were other steps where microplastics in the sediment could have been lost. All samples were dried prior to elutriation, with some dried in an oven at 60 °C and some dried in an autoclave. After drying was complete, it was noted that the standard temperature of the autoclave was approximately 120 °C. This could have resulted in the melting together of microplastics consisting of polymers with a low melting temperature (i.e. some grades of PE have a melting temperature as low as 80 °C). The presence of microplastics with lower melting temperatures would likely reduce the overall count of microplastics extracted from a sample. This would only be applicable to LE and SA samples, which were dried in the autoclave, and not to LB samples, which were dried in the oven.

During elutriation, microplastics could have become stuck to the inside of the PVC column due to static interactions. In addition, microplastics which exited the column via supernatant water may have stuck to the retainer filter edges or column outflow lip. Between elutriation and floatation, filters were stored in aluminium foil. Despite the removal of excess water from the filters by dabbing the clean side on blue roll prior to being wrapped, the foil degraded quickly on account of the residual moisture present on the filters. This may have resulted in a slight loss of solids retained on the elutriation of filters for floatation by cutting into 0.5 - 1 mm squares also could have resulted in the loss of microplastics. During floatation, microplastics may have become trapped inside the glass pipette used to transfer the surface layer to the filter. They could have also become stuck to the sides of the Büchner funnel during vacuum filtration, despite rinsing with RO water to minimise this. In addition, microplastics may have remained within ZnCl₂ solution or stuck to the edges of the centrifuge tube near the surface of the solution.

Further measures could be taken to overcome some of these loss steps throughout the method. This includes securing the base sieve filter in place with bolts before adding sediment to the PVC column, which would minimise the loss of sediment during elutriation. Fewer transfer steps would also reduce the potential for sample loss. For example, instead of wrapping filters in foil then carrying out floatation at a later stage, floatation could be carried out immediately after elutriation to remove the need for wrapping filters between these two method steps. Alternatively, other methods involving

a single step for microplastics extraction from sediments could be considered, such as the use of a Sediment-Microplastic Isolation (SMI) unit, proposed by Coppock et al. (2017). This technique involves a single step floatation using ZnCl₂ solution, thus reducing the potential loss steps through transfer of solids to different containers.

4.4 LOW METHOD EXTRACTION EFFICIENCY

The spiked sediment tests resulted in varied extraction efficiencies across size range, morphology and polymer type (22 - 41 %). Compared to the results of spiked sediment tests presented in Claessens et al. (2013) (98 – 100 %), these results indicated that the amended method had a very low method extraction efficiency (mean average 31 %). This was substantially lower than the target extraction efficiency of > 90 % that was set as an objective of this study. The issues around extraction efficiency arguably presented the most considerable method limitations, as the efficiency was not only low, but had substantial variation between size and polymer type. This meant that the microplastics profile observed on the filters following extraction from intertidal sediments was not likely to be fully representative of the microplastics in the environment.

PA fibres were recovered from spiked sediment samples at a higher % than fragments of PVC and PS (41 % vs 30 % and 23 %, respectively). This suggests that microplastics of different morphology types and polymers were recovered from sediment samples at different extraction efficiencies. Also, as mentioned previously, microplastics between 1 – 5 mm were recovered at around half the % of microplastics between 100 μ m – 1 mm (22 and 41 %, respectively). This likely impacted the results of sample analysis by underestimating the contribution of large microplastics to microplastic contamination in sediments. This particular method involving elutriation was therefore deemed to be incompatible with the extraction of microplastics > 1 mm.

Ideally, the extraction efficiency for microplastics should be consistently > 90% for microplastics of varying characteristics (i.e. morphology, polymer, size) found in the environment. Further method optimisation is required to try and achieve a higher extraction efficiency of microplastics from sediments. This could include different aeration stone setups, and/or different water flow rates for elutriation. Another suggested amendment to the method would be to change the initial sieve, used for sorting sediments prior to elutriation, back to 1 mm, as in Claessens et al. (2013). Following this, the sediment sample < 1 mm would be run through the method as described (elutriation, floatation, microscopy). The sediment > 1 mm retained on the sieve would then be sieved through a 5 mm mesh to remove larger debris and put through floatation in high-density

salt solution (no elutriation necessary). In addition, more robust and varied spiked sediment tests should be carried out to assess a wider range of polymer types (i.e. PE, Polyethylene terephthalate; PET) and morphologies (i.e. MBD, MFI, MFM).

4.5 POTENTIAL IMPACTS OF SEDIMENT GRAIN SIZE ON METHOD SUITABILITY

Grain size analysis revealed that sediments varied in characteristics between intertidal sites (Table 3.5). It is likely that grain size impacted on the results (or lack thereof) obtained from SA sample analysis. SA sediments were the finest of the three Jersey intertidal sediments analysed, assigned as 'very well sorted, very fine sand' following grain size analysis (mean grain size 104.3 µm). Following elutriation and floatation, the material extracted from SA samples was of substantially more volume than that of the other samples, and was found to be primarily biological material (forams, bivalves, etc.). The volume and abundance of material that was not of synthetic polymer origin rendered analysis of these filters difficult, and thus visual sorting of microplastics was unsuccessful. It is likely that the high-density ZnCl₂ solution used during the floatation step was sufficiently dense to float the small biological structures within the sediment such as bivalve and foraminifera shells (Figure 3.1). In addition, grain size could have impacted on the overall efficiency of the method. This could be confirmed through further tests involving spiked sediment with different grain size distributions. It is important to have a method which is relatively consistent across different grain sizes, as sediment grain size may also impact the distribution of microplastics found in marine sediments (Martins and Sobral, 2011).

To overcome the prevalence of non-plastic material extracted from finer sediments, further laboratory techniques to isolate microplastics could be employed. A number of studies have used hydrogen peroxide (H₂O₂) to treat samples prior to analysis in order to remove biological material (Cole et al., 2014; Foekema et al., 2013; Mathalon and Hill, 2014; Wesch et al., 2016). However, this was demonstrated to result in incomplete dissolution of biological tissue and a significant loss of microplastics from samples (Nuelle et al., 2014). The use of technical grade enzymes, including proteinase, chitinase, cellulose and lipase, could offer a more effective approach to remove biological content of sediments. For example, the Basic Enzymatic Purification Protocol (BEPP) proposed by Löder et al. (2017), which involves several stages of enzymatic purification to remove various types of biological material at each stage (shells, exoskeletons, cell walls, etc.). This technique is preferable because enzymes are biological agents and thus do not

destroy or impact on the microplastics present with the sample, as they are not easily impacted by biological processes.

4.6 IDENTIFICATION OF MICROPLASTICS USING LIGHT MICROSCOPY

Visual sorting using a microscope to define the type, morphology, and colour of microplastics is one of the most common methods of microplastics identification, and is suggested as a first step for microplastics analysis (Hidalgo-Ruz et al., 2012). This method is cost-effective and provides some idea of the range and number of microplastics extracted from sediment samples. Due to a lack of availability of other analytical techniques to identify microplastics for the specific scope of this study, visual sorting using a light microscope was used as the sole method to identify and quantify microplastics in Jersey intertidal sediments. This presented a number of method limitations and issues.

Firstly, visual sorting was extremely time-consuming (approx. 3 – 4 hours per filter). It is a subjective method, which is highly dependent on light levels, the person examining the filters, and the quality and magnification of the dissection microscope. This is particularly true with regard to identifying colour (Song et al., 2015). In addition, visual identification does not allow for the verification of material type. This meant that polymer type could not be confirmed for particles extracted from Jersey samples, and, more importantly, it was not possible to ascertain that the particles visually resembling microplastics were of synthetic polymer origin. The importance of using analytical laboratory techniques to determine the chemical composition the particles resembling microplastics (i.e. FT-IR or Raman spectroscopy, detailed below) was highlighted in a recent case study by Löder and Gerdts (2015). In the case study, only 1.4% of particles that resembled microplastics under the microscope were of synthetic polymer origin (particles between $100 - 500 \mu m$, approx.). The majority of other particles extracted were confirmed as guartz sand granules, using FT-IR analysis and comparison of spectra to the IR spectrum of laboratory guartz. Taking the visual observations into account on their own would therefore result in error rate of 98.6 %. Even considering larger particle sizes (> 500 µm), which are somewhat easier to categorise under the microscope, the error rate of visual sorting reported in the literature ranges from 20 % (Eriksen et al., 2013a) to 70 % (Hidalgo-Ruz et al., 2012). With a lack of laboratory analysis techniques available as part of the scope of this project, it was not possible to confirm the chemical composition of particles observed on the filters following extraction from Jersey intertidal sediments. Therefore it is highly likely that the estimate totals for microplastics concentrations (Figure 3.4) are a gross overestimation of microplastics in the environment. Assuming a high error rate of 98.6%, as presented by Löder and Gerdts (2015), the mean average estimates for LB and LE (without standard deviation) would be altered from 4,209 MP kg⁻¹ DW and 3,806 MP kg⁻¹ DW, respectively, to 58.9 MP kg⁻¹ DW and 53.3 MP kg⁻¹ DW, respectively. Interestingly, this is more in line with recorded concentrations for sediments published in the literature (Table 1.1). However, it was not possible to determine the actual error rate for microplastic identification in Jersey intertidal samples. Thus these postulations only serve to highlight the implicit variance in the microplastic concentration estimates.

Another fundamental drawback of visual sorting is the size limitation. In this study, initial counts included smaller particles (< 100 μ m), which were listed as dark microfragments (MMP/MFR/DK). However, later in the study, it was decided that these fragments should not be included in the final counts, because their minuteness meant that they were unable to be visually discriminated as microplastics with any degree of certainty. The total count without MMP/MFR/DK was 84.8 % lower than the initial count across the two sites (individually, the second count for LB was 87.3 % lower, and for LE was 80.7 % lower than the initial count). Conversely to the issue of error rates described above, this limitation could result in an underestimation of microplastics observed in Jersey sediments, by excluding the size fraction between 38 – 100 μ m.

Visual sorting of microplastics is therefore recommended to be used as a first step for microplastics analysis only. New techniques have been developed to assist with visual sorting, including the use of Nile red dye to quantify PE, PP, PS and nylon particles by fluorescence (Erni-Cassola et al., 2017). However, visual sorting is only suitable for identifying larger microplastics. Some studies suggest a particle size limit > 500 µm (Löder and Gerdts, 2015), whilst others suggest a more conservative limit of > 1 mm (Hidalgo-Ruz et al., 2012). Material extracted from intertidal sediment samples should be subject to further analyses to verify synthetic polymer origin of particles observed. As mentioned above, Fourier-Transform Infra-Red spectroscopy (FT-IR) and Raman spectroscopy are common methods that have been used in previous studies to do this (Elert et al., 2017). Both techniques involve obtaining a spectrum for a particle and comparing this to a library of known synthetic polymer spectra. FT-IR is the arguably the most reliable and straightforward method of differentiating between plastic and nonplastic items, and is also capable of identifying particles down to a few µm (Hidalgo-Ruz et al., 2012). Thus FT-IR is the most widely used technique across the literature (Cincinelli et al., 2017; Kunz et al., 2016; Mohamed Nor and Obbard, 2014; Syranidou et al., 2017; Yu et al., 2018). Raman spectroscopy recommended for particles < 20 mm in size, as it provides higher resolution spectra (Shim et al., 2017).

5 SUMMARY OF FINDINGS

A method for extracting microplastics from environmental sediment samples was developed and optimised to cover a wide size range of microplastics (100 - 5 mm). However, the method was subject to a number of limitations. The mean average extraction efficiency achieved using sediments spiked with microplastics was 31 %. This was substantially lower than the target extraction efficiency of > 90 % that was set as an objective of this study. This, along with a number of other method limitations, impacted greatly on the data obtained from sample analysis, and made it difficult to draw any robust conclusions with regards to microplastic contamination in Jersey intertidal sites. A microplastic profile was outlined for the particles observed on filters, however, due to the numerous method limitations and variance in the data, this is not likely to be realistic to the microplastic profile found in the environment and is thus not considered an accurate representation of microplastic contamination in Jersey intertidal sediments. Estimates for microplastic concentrations in Jersey intertidal sediments, even taking contamination levels into account, were at least one order of magnitude in excess of recorded concentrations for sediments in the literature, which further supported the theory that this data was unrealistic.

Other method limitations identified following sample analysis included microplastic contamination in the laboratory, likely in the form of airbourne fibres, microplastic particles on surfaces and equipment, and fragments leached from plastic equipment. This was quantified using the results of tap water blanks. The characteristics of microplastics > 1 mm were remarkably similar between sample and blank filters, suggesting that airbourne filters had contaminated the sample filters to some degree. There were also a number of potential sample loss steps throughout the method for sediments and microplastics, which could have impacted on the final counts. Finally, the visual sorting method used to identify and quantify microplastics on filters was highly subjective. The use of an analytical method to confirm the synthetic polymer origin of particles (i.e. FT-IR or Raman spectroscopy) would have greatly increased the reliability of the data.

These results highlight the implicit variance in microplastics data and substantiate the importance of clean laboratory spaces and standardised methods for the analysis of environmental samples.

6 FUTURE DIRECTIONS

The field of microplastics research is a relatively recent development, and thus the majority of techniques for the monitoring and quantification of microplastic contamination in marine sediments are still in the preliminary stages of testing and validation. This study demonstrates the complexities of microplastics research, with multiple variables and limitations impacting the validity of environmental data, and attests to the importance in working towards standardised techniques for microplastic quantification in sediments.

To further improve the specific method outlined in this study, it is recommended that:

- A forensic approach is adopted (i.e. clean air filters, cotton lab coats, monitoring)
- Non-plastic equipment be used where possible (i.e. metal elutriation column)
- 25 % extra sediment should be collected in the field to account for drying
- The elutriation column base sieve should be secured with bolts to prevent loss
- Floatation should be carried out immediately after elutriation to reduce transfer steps
- Amend the protocol for microplastics > 1 mm (sieve separation then floatation only)
- Carry out further spiked sediment tests to assess microplastics of different polymers and morphologies, and different grain size sediments
- Optimise the aeration and water flow rate to maximise extraction efficiency
- Treat samples with enzymatic purification protocol to remove biological material
- Use FT-IR and/or Raman spectroscopy to confirm synthetic polymer origin

Alternatively, other methods for microplastics extraction from sediments could be considered, such as the use of a Sediment-Microplastic Isolation (SMI) unit, proposed by Coppock et al. (2017), which involves a single step floatation using ZnCl₂ solution.

Overall, priority should be given to standardising the general protocol for microplastics research to keep the impacts of contamination to a consistent minimum across studies. The forensic approach outlined by Woodall et al. (2015) is recommended for future work to quantify microplastics in marine sediments and other environmental samples.

LITERATURE CITED

- Andrady, A.L., 2011. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030
- Barnes, D.K.A., Galgani, F., Thompson, R.C., Barlaz, M., 2009. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci. 364, 1985–1998. https://doi.org/10.1098/rstb.2008.0205
- Baztan, J., Carrasco, A., Chouinard, O., Cleaud, M., Gabaldon, J.E., Huck, T., Jaffrès, L., Jorgensen, B., Miguelez, A., Paillard, C., Vanderlinden, J.P., 2014. Protected areas in the Atlantic facing the hazards of micro-plastic pollution: First diagnosis of three islands in the Canary Current. Mar. Pollut. Bull. 80, 302–311. https://doi.org/10.1016/j.marpolbul.2013.12.052
- Besseling, E., Wegner, A., Foekema, E.M., Van Den Heuvel-Greve, M.J., Koelmans, A.A., 2013. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.). Environ. Sci. Technol. 47, 593–600. https://doi.org/10.1021/es302763x
- Blott, S.J., Pye, K., 2001. Gradistat: A Grain Size Distribution and Statistics Package for the Analysis of Unconcolidated Sediments. Earth Surf. Process. Landforms 26, 1237–1248. https://doi.org/10.1002/esp.261
- Blumenröder, J., Sechet, P., Kakkonen, J.E., Hartl, M.G.J., 2017. Microplastic contamination of intertidal sediments of Scapa Flow, Orkney: A first assessment. Mar. Pollut. Bull. 124, 112–120. https://doi.org/10.1016/j.marpolbul.2017.07.009
- Boucher, J., Friot, D., 2017. Primary microplastics in the oceans: A global evaluation of sources. https://doi.org/10.2305/IUCN.CH.2017.01.en
- Brillant, M.G.S., MacDonald, B.A., 2000. Postingestive selection in the sea scallop, Placopecten magellanicus (Gmelin): the role of particle size and density. J. Exp. Mar. Bio. Ecol. 253, 211–227.
- Browne, M.A., Crump, P., Niven, S.J., Teuten, E.L., Tonkin, A., Galloway, T., Thompson, R.C., 2011. Accumulations of microplastic on shorelines worldwide: sources and sinks. Environ. Sci. Technol. 9175–9179. https://doi.org/10.1021/es201811s
- Browne, M.A., Galloway, T.S., Thompson, R.C., 2010. Spatial Patterns of Plastic Debris along Estuarine Shorelines Spatial Patterns of Plastic Debris along Estuarine Shorelines. Environ. Sci. Technol. 44, 3404–3409. https://doi.org/10.1021/es903784e
- Buchanan, J.B., 1971. Pollution by synthetic fibres. Mar. Pollut. Bull. 2, 23. https://doi.org/10.1016/0025-326X(71)90136-6
- Cai, L., Yang, Y., Jiao, N., Zhang, R., 2015. Evaluation of tangential flow filtration for the concentration and separation of bacteria and viruses in contrasting marine environments. PLoS One 10, 1–12. https://doi.org/10.1371/journal.pone.0136741
- Carpenter, E.J., Smith Jr., K.L., 1972. Plastics on the Sargasso sea surface. Science (80-.). 175, 1240– 1241. https://doi.org/10.1126/science.175.4027.1240
- Carson, H.S., Colbert, S.L., Kaylor, M.J., McDermid, K.J., 2011. Small plastic debris changes water movement and heat transfer through beach sediments. Mar. Pollut. Bull. 62, 1708–1713. https://doi.org/10.1016/j.marpolbul.2011.05.032
- Cincinelli, A., Scopetani, C., Chelazzi, D., Lombardini, E., Martellini, T., Katsoyiannis, A., Fossi, M.C., Corsolini, S., 2017. Microplastic in the surface waters of the Ross Sea (Antarctica): Occurrence, distribution and characterization by FTIR. Chemosphere 175, 391–400. https://doi.org/10.1016/j.chemosphere.2017.02.024
- Claessens, M., Meester, S. De, Landuyt, L. Van, Clerck, K. De, Janssen, C.R., 2011. Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar. Pollut. Bull. 62, 2199– 2204. https://doi.org/10.1016/j.marpolbul.2011.06.030
- Claessens, M., Van Cauwenberghe, L., Vandegehuchte, M.B., Janssen, C.R., 2013. New techniques for the detection of microplastics in sediments and field collected organisms. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2013.03.009

- Cole, M., Lindeque, P., Halsband, C., Galloway, T.S., 2011. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 62, 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025
- Cole, M., Webb, H., Lindeque, P.K., Fileman, E.S., Halsband, C., Galloway, T.S., 2014. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci. Rep. 4, 1–8. https://doi.org/10.1038/srep04528
- Colton, J.B., Burns, B.R., Knapp, F.D., 1974. Plastic particles in surface waters of the northwestern atlantic. Science 185, 491–497. https://doi.org/10.1126/science.185.4150.491
- Coppock, R.L., Cole, M., Lindeque, P.K., Queirós, A.M., Galloway, T.S., 2017. A small-scale, portable method for extracting microplastics from marine sediments. Environ. Pollut. 230, 829–837. https://doi.org/10.1016/j.envpol.2017.07.017
- Cozar, A., Echevarria, F., Gonzalez-Gordillo, J.I., Irigoien, X., Ubeda, B., Hernandez-Leon, S., Palma, A.T., Navarro, S., Garcia-de-Lomas, J., Ruiz, A., Fernandez-de-Puelles, M.L., Duarte, C.M., 2014. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. 111, 10239–10244. https://doi.org/10.1073/pnas.1314705111
- Crawford, C.B., Quinn, B., 2016. Microplastic Pollutants, Microplastic Pollutants. https://doi.org/10.1016/B978-0-12-809406-8.00006-2
- Crawford, C.B., Quinn, B., Crawford, C.B., Quinn, B., 2017. 10 Microplastic identification techniques, in: Microplastic Pollutants. https://doi.org/10.1016/B978-0-12-809406-8.00010-4
- de Carvalho, D.G., Baptista Neto, J.A., 2016. Microplastic pollution of the beaches of Guanabara Bay, Southeast Brazil. Ocean Coast. Manag. 128, 10–17. https://doi.org/10.1016/j.ocecoaman.2016.04.009
- Dekiff, J.H., Remy, D., Klasmeier, J., Fries, E., 2014. Occurrence and spatial distribution of microplastics in sediments from Norderney. Environ. Pollut. 186, 248–256. https://doi.org/10.1016/j.envpol.2013.11.019
- Draft Statutory Instruments, 2017. 2017 No . 0000 ENVIRONMENTAL PROTECTION , ENGLAND The Environmental Protection (Microbeads) (England) Regulations 2017 87, 9–11.
- Elert, A.M., Becker, R., Duemichen, E., Eisentraut, P., Falkenhagen, J., Sturm, H., Braun, U., 2017. Comparison of different methods for MP detection: What can we learn from them, and why asking the right question before measurements matters? Environ. Pollut. 231, 1256–1264. https://doi.org/10.1016/j.envpol.2017.08.074
- Eriksen, M., Lebreton, L.C.M., Carson, H.S., Thiel, M., Moore, C.J., Borerro, J.C., Galgani, F., Ryan, P.G., Reisser, J., 2014. Plastic Pollution in the World's Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS One 9, 1–15. https://doi.org/10.1371/journal.pone.0111913
- Eriksen, M., Mason, S., Wilson, S., Box, C., Zellers, A., Edwards, W., Farley, H., Amato, S., 2013a. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar. Pollut. Bull. 77, 177– 182. https://doi.org/10.1016/j.marpolbul.2013.10.007
- Eriksen, M., Maximenko, N., Thiel, M., Cummins, A., Lattin, G., Wilson, S., Hafner, J., Zellers, A., Rifman, S., 2013b. Plastic pollution in the South Pacific subtropical gyre. Mar. Pollut. Bull. 68, 71–76. https://doi.org/10.1016/j.marpolbul.2012.12.021
- Erni-Cassola, G., Gibson, M.I., Thompson, R.C., Christie-Oleza, J.A., 2017. Lost, but Found with Nile Red: A Novel Method for Detecting and Quantifying Small Microplastics (1 mm to 20 µm) in Environmental Samples. Environ. Sci. Technol. 51, 13641–13648. https://doi.org/10.1021/acs.est.7b04512
- Farrell, P., Nelson, K., 2013. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ. Pollut. 177, 1–3. https://doi.org/10.1016/j.envpol.2013.01.046
- Foekema, E.M., De Gruijter, C., Mergia, M.T., Van Franeker, J.A., Murk, A.J., Koelmans, A.A., 2013. Plastic in north sea fish. Environ. Sci. Technol. 47, 8818–8824. https://doi.org/10.1021/es400931b
- Fok, L., Cheung, P.K., 2015. Hong Kong at the Pearl River Estuary: A hotspot of microplastic pollution. Mar. Pollut. Bull. 99, 112–118. https://doi.org/10.1016/j.marpolbul.2015.07.050
- Folk, R.L., 1954. The distinction between grain size and mineral composition in sedimentary-rock nomenclature. J. Geol. 62, 344–359.

- Folk, R.L., Ward, W.C., 1957. Brazos River bar: a study in the significance of grain size parameters. J. Sediment. Petrol. 27, 3–26.
- Fossi, M.C., Baini, M., Panti, C., Galli, M., Jiménez, B., Muñoz-Arnanz, J., Marsili, L., Finoia, M.G., Ramírez-Macías, D., 2017. Are whale sharks exposed to persistent organic pollutants and plastic pollution in the Gulf of California (Mexico)? First ecotoxicological investigation using skin biopsies. Comp. Biochem. Physiol. Part - C Toxicol. Pharmacol. 199, 48–58. https://doi.org/10.1016/j.cbpc.2017.03.002
- Fossi, M.C., Coppola, D., Baini, M., Giannetti, M., Guerranti, C., Marsili, L., Panti, C., de Sabata, E., Clò, S., 2014. Large filter feeding marine organisms as indicators of microplastic in the pelagic environment: The case studies of the Mediterranean basking shark (Cetorhinus maximus) and fin whale (Balaenoptera physalus). Mar. Environ. Res. 100, 17–24. https://doi.org/10.1016/j.marenvres.2014.02.002
- Fossi, M.C., Panti, C., Guerranti, C., Coppola, D., Giannetti, M., Marsili, L., Minutoli, R., 2012. Are baleen whales exposed to the threat of microplastics? A case study of the Mediterranean fin whale (Balaenoptera physalus). Mar. Pollut. Bull. 64, 2374–2379. https://doi.org/10.1016/j.marpolbul.2012.08.013
- Frère, L., Maignien, L., Chalopin, M., Huvet, A., Rinnert, E., Morrison, H., Kerninon, S., Cassone, A.L., Lambert, C., Reveillaud, J., Paul-Pont, I., 2018. Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size. Environ. Pollut. 242, 614–625. https://doi.org/10.1016/j.envpol.2018.07.023
- Frère, L., Paul-Pont, I., Rinnert, E., Petton, S., Jaffre, J., Bihannic, I., Soudant, P., Lambert, C., Huvet, A., 2017. Influence of environmental and anthropogenic factors on the composition, concentration and spatial distribution of microplastics: A case study of the Bay of Brest (Brittany, France). Environ. Pollut. 225, 211–222. https://doi.org/10.1016/j.envpol.2017.03.023
- Gall, S.C., Thompson, R.C., 2015. The impact of debris on marine life. Mar. Pollut. Bull. 92, 170–179. https://doi.org/10.1016/j.marpolbul.2014.12.041
- Germanov, E.S., Marshall, A.D., Bejder, L., Fossi, M.C., Loneragan, N.R., 2018. Microplastics: No Small Problem for Filter-Feeding Megafauna. Trends Ecol. Evol. 33, 227–232. https://doi.org/10.1016/j.tree.2018.01.005
- GESAMP, 2015. Sources, fate and effects of microplastics in the marine environment: a global assessment (Kershaw, P. J., ed.). Reports Stud. GESAMP, No. 90 96.
- Geyer, R., Jambeck, J.R., Law, K.L., 2017. Production, uses, and fate of all plastics ever made. Sci. Adv. 3, 5. https://doi.org/10.1126/sciadv.1700782
- Graham, E.R., Thompson, J.T., 2009. Deposit- and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. J. Exp. Mar. Bio. Ecol. 368, 22–29. https://doi.org/10.1016/j.jembe.2008.09.007
- Gregory, M.R., 1983. Virgin plastic granules on some beaches of Eastern Canada and Bermuda. Mar. Environ. Res. 10, 73–92. https://doi.org/10.1016/0141-1136(83)90011-9
- Gregory, M.R., 1978. Accumulation and distribution of virgin plastic granules on New Zealand beaches. New Zeal. J. Mar. Freshw. Res. 12, 399–414. https://doi.org/10.1080/00288330.1978.9515768
- Harrison, J.P., Schratzberger, M., Sapp, M., Osborn, A.M., 2014. Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol. 14, 1–15. https://doi.org/10.1186/s12866-014-0232-4
- Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., Thiel, M., 2012. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 46, 3060–3075. https://doi.org/10.1021/es2031505
- Hidalgo-Ruz, V., Thiel, M., 2013. Distribution and abundance of small plastic debris on beaches in the SE Pacific (Chile): A study supported by a citizen science project. Mar. Environ. Res. 87–88, 12–18. https://doi.org/10.1016/j.marenvres.2013.02.015
- Ivar Do Sul, J.A., Costa, M.F., 2014. The present and future of microplastic pollution in the marine environment. Environ. Pollut. 185, 352–364. https://doi.org/10.1016/j.envpol.2013.10.036

Ivar do Sul, J.A., Spengler, Â., Costa, M.F., 2009. Here, there and everywhere. Small plastic fragments and

pellets on beaches of Fernando de Noronha (Equatorial Western Atlantic). Mar. Pollut. Bull. 58, 1236–1238. https://doi.org/10.1016/j.marpolbul.2009.05.004

- Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A.L., Narayan, R., Law, K.L., 2015. Plastic waste inputs from land into the ocean. Science (80-.). 768–771. https://doi.org/10.1126/science.1260352
- Jayasiri, H.B., Purushothaman, C.S., Vennila, A., 2013. Plastic litter accumulation on high-water strandline of urban beaches in Mumbai, India. Environ. Monit. Assess. 185, 7709–7719. https://doi.org/10.1007/s10661-013-3129-z
- JEP, 2017. Jersey aims to copy UK by banning sale of microbeads [WWW Document]. Jersey Evening Post August 1 2017. URL https://jerseyeveningpost.com/news/2017/08/01/jersey-will-copy-uk-bybanning-sale-of-microbeads/
- Kaberi, H., Zeri, C., Mousdis, G., Papadopoulos, A., Streftaris, N., 2013. Microplastics along the shoreline of a Greek island (Kea isl., Aegean Sea): types and densities in relation to beach orientation, characteristics and proximity to sources. Proc. 4th Int. Conf. Environ. Manag. Eng. Plan. Econ. SECOTOX Conf. Mykonos island, Greece. June 24-28, 2013 197–202.
- Kaiser, D., Kowalski, N., Waniek, J.J., 2017. Effects of biofouling on the sinking behavior of microplastics. Environ. Res. Lett. 12. https://doi.org/10.1088/1748-9326/aa8e8b
- Khordagui, H.K., Abu- Hilal, A.H., 1994. Industrial plastic on the southern beaches of the Arabian Gulf and the western beaches of the Gulf of Oman. Environ. Pollut. 84, 325–327. https://doi.org/10.1016/0269-7491(94)90143-0
- Kim, I.S., Chae, D.H., Kim, S.K., Choi, S.B., Woo, S.B., 2015. Factors Influencing the Spatial Variation of Microplastics on High-Tidal Coastal Beaches in Korea. Arch. Environ. Contam. Toxicol. 69, 299–309. https://doi.org/10.1007/s00244-015-0155-6
- Kirstein, I. V., Kirmizi, S., Wichels, A., Garin-Fernandez, A., Erler, R., Löder, M., Gerdts, G., 2016. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar. Environ. Res. 120, 1–8. https://doi.org/10.1016/j.marenvres.2016.07.004
- Krumbein, W.C., Pettijohn, F.J., 1938. Manual of Sedimentary Petrography. Appleton-Century-Crofts, New York.
- Kunz, A., Walther, B.A., Lï¿¹/₂wemark, L., Lee, Y.C., 2016. Distribution and quantity of microplastic on sandy beaches along the northern coast of Taiwan. Mar. Pollut. Bull. 111, 126–135. https://doi.org/10.1016/j.marpolbul.2016.07.022
- Kusui, T., Noda, M., 2003. International survey on the distribution of stranded and buried litter on beaches along the Sea of Japan. Mar. Pollut. Bull. 47, 175–179. https://doi.org/10.1016/S0025-326X(02)00478-2
- Laglbauer, B.J.L., Franco-Santos, R.M., Andreu-Cazenave, M., Brunelli, L., Papadatou, M., Palatinus, A., Grego, M., Deprez, T., 2014. Macrodebris and microplastics from beaches in Slovenia. Mar. Pollut. Bull. 89, 356–366. https://doi.org/10.1016/j.marpolbul.2014.09.036
- Lee, J., Hong, S., Song, Y.K., Hong, S.H., Jang, Y.C., Jang, M., Heo, N.W., Han, G.M., Lee, M.J., Kang, D., Shim, W.J., 2013. Relationships among the abundances of plastic debris in different size classes on beaches in South Korea. Mar. Pollut. Bull. 77, 349–354. https://doi.org/10.1016/j.marpolbul.2013.08.013
- Li, W.C., Tse, H.F., Fok, L., 2016. Plastic waste in the marine environment: A review of sources, occurrence and effects. Sci. Total Environ. 566–567, 333–349. https://doi.org/10.1016/j.scitotenv.2016.05.084
- Liebezeit, G., Dubaish, F., 2012. Microplastics in beaches of the East Frisian Islands Spiekeroog and Kachelotplate. Bull. Environ. Contam. Toxicol. 89, 213–217. https://doi.org/10.1007/s00128-012-0642-7
- Löder, M.G.J., Gerdts, G., 2015. Methodology Used for the Detection and Identification of Microplastics A Critical Appraisal, in: Marine Anthropogenic Litter. Helgoland, Germany, pp. 201–227. https://doi.org/10.1007/978-3-319-16510-3
- Löder, M.G.J., Imhof, H.K., Ladehoff, M., Löschel, L.A., Lorenz, C., Mintenig, S., Piehl, S., Primpke, S., Schrank, I., Laforsch, C., Gerdts, G., 2017. Enzymatic Purification of Microplastics in Environmental Samples. Environ. Sci. Technol. 51, 14283–14292. https://doi.org/10.1021/acs.est.7b03055

- Long, M., Moriceau, B., Gallinari, M., Lambert, C., Huvet, A., Raffray, J., Soudant, P., 2015. Interactions between microplastics and phytoplankton aggregates: Impact on their respective fates. Mar. Chem. 175, 39–46. https://doi.org/10.1016/j.marchem.2015.04.003
- Lourenço, P.M., Serra-Gonçalves, C., Ferreira, J.L., Catry, T., Granadeiro, J.P., 2017. Plastic and other microfibers in sediments, macroinvertebrates and shorebirds from three intertidal wetlands of southern Europe and west Africa. Environ. Pollut. 231, 123–133. https://doi.org/10.1016/j.envpol.2017.07.103
- Martins, J., Sobral, P., 2011. Plastic marine debris on the Portuguese coastline: A matter of size? Mar. Pollut. Bull. 62, 2649–2653. https://doi.org/10.1016/j.marpolbul.2011.09.028
- Mathalon, A., Hill, P., 2014. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar. Pollut. Bull. 81, 69–79. https://doi.org/10.1016/j.marpolbul.2014.02.018
- McDermid, K.J., McMullen, T.L., 2004. Quantitative analysis of small-plastic debris on beaches in the Hawaiian archipelago. Mar. Pollut. Bull. 48, 790–794. https://doi.org/10.1016/j.marpolbul.2003.10.017
- Ministry of Justice, 2014. Fact sheet on the UK's relationship with the Crown Dependencies 1-4.
- Mintenig, S.M., Löder, M.G.J., Primpke, S., Gerdts, G., 2019. Low numbers of microplastics detected in drinking water from ground water sources. Sci. Total Environ. 648, 631–635. https://doi.org/10.1016/j.scitotenv.2018.08.178
- Mohamed Nor, N.H., Obbard, J.P., 2014. Microplastics in Singapore's coastal mangrove ecosystems. Mar. Pollut. Bull. 79, 278–283. https://doi.org/10.1016/j.marpolbul.2013.11.025
- Moore, C.J., Moore, S.L., Leecaster, M.K., Weisberg, S.B., 2001. A comparison of plastic and plankton in the North Pacific Central Gyre. Mar. Pollut. Bull. 42, 1297–1300. https://doi.org/10.1016/S0025-326X(01)00114-X
- MSFD Technical Subgroup on Marine Litter, 2013. Guidance on monitoring of marine litter in European seas, JRC Scientific and Policy Reports. Brussels. https://doi.org/10.2788/99475
- Murphy, F., Ewins, C., Carbonnier, F., Quinn, B., 2016. Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environ. Sci. Technol. 50, 5800–5808. https://doi.org/10.1021/acs.est.5b05416
- Nel, H.A., Froneman, P.W., 2015. A quantitative analysis of microplastic pollution along the south-eastern coastline of South Africa. Mar. Pollut. Bull. 101, 274–279. https://doi.org/10.1016/j.marpolbul.2015.09.043
- Ng, K.L., Obbard, J.P., 2006. Prevalence of microplastics in Singapore's coastal marine environment. Mar. Pollut. Bull. 52, 761–767. https://doi.org/10.1016/j.marpolbul.2005.11.017
- Norén, F., 2007. Small plastic particles in Coastal Swedish waters. KIMO Sweden 1–11.
- Nuelle, M.T., Dekiff, J.H., Remy, D., Fries, E., 2014. A new analytical approach for monitoring microplastics in marine sediments. Environ. Pollut. 184, 161–169. https://doi.org/10.1016/j.envpol.2013.07.027
- Ory, N.C., Gallardo, C., Lenz, M., Thiel, M., 2018. Capture, swallowing, and egestion of microplastics by a planktivorous juvenile fish. Environ. Pollut. 240, 566–573. https://doi.org/10.1016/j.envpol.2018.04.093
- Pivokonsky, M., Cermakova, L., Novotna, K., Peer, P., Cajthaml, T., Janda, V., 2018. Occurrence of microplastics in raw and treated drinking water. Sci. Total Environ. 643, 1644–1651. https://doi.org/10.1016/j.scitotenv.2018.08.102
- PlasticsEurope, 2015. Plastics-The Facts 2013: An analysis of European latest plastics production, demand and waste data. http:// www.plasticseurope.org/Document/plastics-the-facts-2013.aspx 1–40. https://doi.org/10.1016/j.marpolbul.2013.01.015
- Reddy, M.S., Shaik Basha, Adimurthy, S., Ramachandraiah, G., 2006. Description of the small plastics fragments in marine sediments along the Alang-Sosiya ship-breaking yard, India. Estuar. Coast. Shelf Sci. 68, 656–660. https://doi.org/10.1016/j.ecss.2006.03.018
- Shah, A.A., Hasan, F., Hameed, A., Ahmed, S., 2008. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. https://doi.org/10.1016/j.biotechadv.2007.12.005
- Shim, W.J., Hong, S.H., Eo, S.E., 2017. Identification methods in microplastic analysis: A review. Anal.

Methods 9, 1384–1391. https://doi.org/10.1039/c6ay02558g

- Song, Y.K., Hong, S.H., Jang, M., Han, G.M., Rani, M., Lee, J., Shim, W.J., 2015. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar. Pollut. Bull. 93, 202–209. https://doi.org/10.1016/j.marpolbul.2015.01.015
- Steer, M., Cole, M., Thompson, R.C., Lindeque, P.K., 2017. Microplastic ingestion in fish larvae in the western English Channel. Environ. Pollut. 226, 250–259. https://doi.org/10.1016/j.envpol.2017.03.062
- Stolte, A., Forster, S., Gerdts, G., Schubert, H., 2015. Microplastic concentrations in beach sediments along the German Baltic coast. Mar. Pollut. Bull. 99, 216–229. https://doi.org/10.1016/j.marpolbul.2015.07.022
- Sundt, P., Schultze, P.-E., Syversen, F., 2014. Sources of microplastic- pollution to the marine environment Project report. (Miljødirektoratet), Nor. Environ. Agency. https://doi.org/M-321|2015
- Sussarellu, R., Suquet, M., Thomas, Y., Lambert, C., Fabioux, C., Pernet, M.E.J., Le Goïc, N., Quillien, V., Mingant, C., Epelboin, Y., Corporeau, C., Guyomarch, J., Robbens, J., Paul-Pont, I., Soudant, P., Huvet, A., 2016. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl. Acad. Sci. 113, 2430–2435. https://doi.org/10.1073/pnas.1519019113
- Syranidou, E., Karkanorachaki, K., Amorotti, F., Franchini, M., Repouskou, E., Kaliva, M., Vamvakaki, M., Kolvenbach, B., Fava, F., Corvini, P.F.X., Kalogerakis, N., 2017. Biodegradation of weathered polystyrene films in seawater microcosms. Sci. Rep. 7, 1–12. https://doi.org/10.1038/s41598-017-18366-y
- Teuten, E.L., Saquing, J.M., Knappe, D.R.U., Barlaz, M.A., Jonsson, S., Björn, A., Rowland, S.J., Thompson, R.C., Galloway, T.S., Yamashita, R., Ochi, D., Watanuki, Y., Moore, C., Viet, P.H., Tana, T.S., Prudente, M., Boonyatumanond, R., Zakaria, M.P., Akkhavong, K., Ogata, Y., Hirai, H., Iwasa, S., Mizukawa, K., Hagino, Y., Imamura, A., Saha, M., Takada, H., 2009. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. B Biol. Sci. 364, 2027–2045. https://doi.org/10.1098/rstb.2008.0284
- Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W.G., McGonigie, D., Russell, A.E., 2004. Lost at Sea: Where Is All the Plastic. Science (80-.). 304, 838. https://doi.org/10.1126/science.1094559
- Turner, A., Holmes, L., 2011. Occurrence, distribution and characteristics of beached plastic production pellets on the island of Malta (central Mediterranean). Mar. Pollut. Bull. 62, 377–381. https://doi.org/10.1016/j.marpolbul.2010.09.027
- Udden, J.A., 1914. Mechanical composition of clastic sediments. Bull. Geol. Soc. Am. 25, 655–744.
- Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M.B., Janssen, C.R., 2015a. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ. Pollut. 199, 10–17. https://doi.org/10.1016/j.envpol.2015.01.008
- Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M.B., Mees, J., Janssen, C.R., 2013a. Assessment of marine debris on the Belgian Continental Shelf. Mar. Pollut. Bull. 73, 161–169. https://doi.org/10.1016/j.marpolbul.2013.05.026
- Van Cauwenberghe, L., Devriese, L., Galgani, F., Robbens, J., Janssen, C.R., 2015b. Microplastics in sediments: A review of techniques, occurrence and effects. Mar. Environ. Res. 111, 5–17. https://doi.org/10.1016/j.marenvres.2015.06.007
- Van Cauwenberghe, L., Janssen, C.R., 2014. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 193, 65–70. https://doi.org/10.1016/j.envpol.2014.06.010
- Van Cauwenberghe, L., Vanreusel, A., Mees, J., Janssen, C.R., 2013b. Microplastic pollution in deep-sea sediments. Environ. Pollut. 182, 495–499. https://doi.org/10.1016/j.envpol.2013.08.013
- Vianello, A., Boldrin, A., Guerriero, P., Moschino, V., Rella, R., Sturaro, A., Da Ros, L., 2013. Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification. Estuar. Coast. Shelf Sci. 130, 54–61. https://doi.org/10.1016/j.ecss.2013.03.022

Wentworth, C.K., 1922. A scale of grade and class terms for clastic sediments. J. Geol. 30, 377–392.

Wesch, C., Barthel, A.K., Braun, U., Klein, R., Paulus, M., 2016. No microplastics in benthic eelpout (Zoarces viviparus): An urgent need for spectroscopic analyses in microplastic detection. Environ.

Res. 148, 36-38. https://doi.org/10.1016/j.envres.2016.03.017

- Wesch, C., Elert, A.M., Wörner, M., Braun, U., Klein, R., Paulus, M., 2017. Assuring quality in microplastic monitoring: About the value of clean-air devices as essentials for verified data. Sci. Rep. 7, 1–8. https://doi.org/10.1038/s41598-017-05838-4
- Wessel, C.C., Lockridge, G.R., Battiste, D., Cebrian, J., 2016. Abundance and characteristics of microplastics in beach sediments: Insights into microplastic accumulation in northern Gulf of Mexico estuaries. Mar. Pollut. Bull. 109, 178–183. https://doi.org/10.1016/j.marpolbul.2016.06.002
- Woodall, L.C., Gwinnett, C., Packer, M., Thompson, R.C., Robinson, L.F., Paterson, G.L.J., 2015. Using a forensic science approach to minimize environmental contamination and to identify microfibres in marine sediments. Mar. Pollut. Bull. 95, 40–46. https://doi.org/10.1016/j.marpolbul.2015.04.044
- Woodall, L.C., Sanchez-Vidal, A., Canals, M., Paterson, G.L.J., Coppock, R., Sleight, V., Calafat, A., Rogers, A.D., Narayanaswamy, B.E., Thompson, R.C., 2014. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1. https://doi.org/10.1098/rsos.140317
- Wright, S.L., Thompson, R.C., Galloway, T.S., 2013. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492. https://doi.org/10.1016/j.envpol.2013.02.031
- Yu, X., Ladewig, S., Bao, S., Toline, C.A., Whitmire, S., Chow, A.T., 2018. Occurrence and distribution of microplastics at selected coastal sites along the southeastern United States. Sci. Total Environ. 613– 614, 298–305. https://doi.org/10.1016/j.scitotenv.2017.09.100
- Zettler, E.R., Mincer, T.J., Amaral-Zettler, L.A., 2013. Life in the "plastisphere": Microbial communities on plastic marine debris. Environ. Sci. Technol. 47, 7137–7146. https://doi.org/10.1021/es401288x
- Zhang, H., 2017. Transport of microplastics in coastal seas. Estuar. Coast. Shelf Sci. 199, 74–86. https://doi.org/10.1016/j.ecss.2017.09.032

APPENDIX

Unit Line		The schutte of		traction of microphy	of i of	from cr	dimon	P UNITON 027			0100/20/01
Jnit Line Brief		רווה מרוואוול חו		ritaction of micropia						ν	0102/00/61
Line Brief	t / Faculty / Dire	ctorate:	5	DES/ FNES				Assessor:		Ha	nnah Brittain
Brief	Manager / Supe	rvisor:						Primary Site / Location:	NOC	S Researc	h Aquarium and 454/01
Com	if Details / Additi iments:	ional notes or	Samples of sediment are fl the supern	uidised within a larg atant and are retaine	e ver sd or	tical co filters,	which	sing an upward flow of filtered seawater. So are then processed using 7M zinc chloride	Solids w solutio	hich float n within a	to the surface flow out w I centrifuge.
AR	T A: RISK ASSES	SMENT				1010	00101				
1) 2	ISK IDENTIFICATION				(2)	RISK A	SSESSI		(3) RISK	MANAGE	MENI
	Activity.	Hazard.	Potential consequences:	Who might be harmed?	Ż	HERENT	Risk	Control measures (use the risk hierarchy and indicate what control	Residu	AL RISK	Further controls? (use the risk hierarchy)
lo.			(What are the potential consequences from that hazard and how could that harm arise?)	(e.g. worker, those nearby, other staff, the public, groups with special considerations)	F IKELIHOOD	TOA9M	RISK / SCORE	The throad	М РАСТ ГКЕГІНООD.	RISK / SCORE RESIDUNT	
-	HANDLING ZNCL ₂ POWDER TO MAKE UP 7M SOLUTION	ZNCL2 POWDER IS AN IRRITANT AND POTENTIAL MUTAGEN	SEVERE ACUTE AND CHRONIC HEALTH EFFECTS, I.E. INFLAMMATION AND MUTAGENESIS CAUSED BY CONTACT OR INHALATION	USER, OTHER LAB USERS IN THE VICINITY IF SPILLS ARE NOT CLEARED UP	4	4	HIGH	100% COTTON LAB COATS ARE WORN AT ALL TIMES WHEN WORKING IN THE LABORATORY. EYE PROTECTION AND NITRILE ALL TIMES WHEN HANDLING ZNCI2 ALL TIMES WHEN HANDLING ZNCI2 POWDER. MASKS SHOULD BE WORN TO MINIMISE RISK OF INHALATION.	2 4	MED	N
5	HANDLING 7M ZNCL2 SOLUTION	ZNCL2 SOLUTION IS AN IRRITANT AND POTENTIAL MUTAGEN	ACUTE AND CHRONIC HEALTH EFFECTS, I.E. INFLAMMATION AND MUTAGENESIS IF CONTACT MADE WITH SKIN OR EYES	USER, OTHER LAB USERS IN THE VICINITY IF SPILLS ARE NOT CLEARED UP	4	e e	MED	100% COTTON LAB COATS ARE WORN AT ALL TIMES WHEN WORKING IN THE LABORATORY. EYE PROTECTION SHOULD BE USED AT ALL TIMES WHEN HANDLING 7M ALL TIMES WHEN HANDLING 7M ZNCL ₂ SOLUTIONS. NITRILE GAUNTLETS SHOULD BE WORN WHEN HANDLING 7M ZNCL ₂ SOLUTIONS.	3	MED	Q
3	ACID WASHING GLASSWARE IN 10% HYDROCHLORIC ACID	HCL IS AN IRRITANT AND SLIGHTLY CORROWNE TO SKN, CLOTHING AND EYES	BURNS OR IRRITATION TO THE SKIN OR EYES	USER, OTHER LAB USERS IN THE VICINITY IF SPILLS ARE NOT CLEARED UP	4	3	MED	100% COTTON LAB COATS ARE WORKING IN THE LABORATORY. EYE WORKING IN THE LABORATORY. EYE PROTECTION SHOULD BE USED AT ALL TIMES WHEN HANDLING 10% HCL SHOULD BE WORN WHEN HANDLING 10% HCL SOLUTIONS.	2 3	MED	N
4	EXTRACTING MICROPLASTICS USING THE ELUTRIATION COLUMN	COLUMN WILL BE HEAVY WHILST IN USE AND HAS A HIGH CENTRE OF GRAVITY	A TOPPLED COLUMN OF FALLING FILTER HOLDER COULD CAUSE CRUSHING CAUSE CRUSHING OTHER EXPERIMENTS OTHER EXPERIMENTS IN THE VICUNTY	USER, OTHER AQUARIUM USERS IN THE VICINITY	4	3	MED	SECURE THE COLUMN USING ROPE AND CONSISTENTY MONITOR WHILST IN USE TO DENURE COLUMN DOES NOT TOPPLE AND FILTERS ARE SECURELY PLACED; HOLD IN PLACE IF NECESSARY.	2 3	LOW	N

COSHH AND RISK ASSESSMENT FORMS

University of Southampton - Risk Assessment V2.3/OES/2017

i

22	RISK ASSESSMENT ACTION PLAN							
	FURTHER CONTROLS OR POST ASSESSMENT ACTIONS REQUIRED (ind. cost)	ACTION BY WHOM?	TARGET DATE	REVIEW DATE	OUTCOME AT REVIEW DATE		RESPONSIBLE MANAGER PRINT & SIGN	DATE
1								
		TAB TO THE EV	ND TO INS	ERT NEW R	SMO			
		ASSESSOR & SUPER	RVISOR / M	VANAGER T	0 COMPLETE			
	OR: SIGNED	PRINT NA	- W	HANNAH BI	RITTAIN	DATE	20-08-2018	
	I confirm that this is a suitable and sufficient risk asses	DECLARATION BY RES ssment for the activities ic	PONSIBLE dentified abc	SUPERVIS	OR / MANAGER: all residual risks can be reduced to as low as is re	asonably pra	cticable.	
		PRINT NA	ME			DATE	4/7/18	
	REVIEW (OR WHEN ACTIVITIES CHANGED OR MODIFIED) ent Review: (Indicate any changes to assessment, reviewer to initia)	and date)	-					
		TÁBTOTHEE DECLA	ND TO INS ARATION BY	ERT NEW F Y USERS:	MO			
	mm war i nave read mis nsk assessment, understand we controls ou	owed verein and will repo	or to the res	sponsible me	anager / supervisor any increents mat occur or any	snoncoming		ament.
	PRINT NAME	SIGNED.			JOB TITLE / STUDENT (indicate U	IG / PGT / PG	SR)	DATE
	LINA ZAPATA RESTREPO				PHD STUDENT			
		TAB TO THE EN	ID TO INSI	ERT NEW	ROWS		-	
	University of	Southampton: Risk As	sessment	form. OES	5 format / BD / OCT 2017)			
	<u> </u>	dimension of Court harmoto	- Dieb Ae	the owner of the	בומניסטטיב מו			
	5	and unsurance in Asic 1241	LAND AND AND AND AND AND AND AND AND AND	Number 200				

Health & Safety risk assessment: Risk Process.

- (1) List the individual tasks associated with the work being undertaken.
- (2) Identify the hazards and any potential consequences associated with each of the tasks that you've identified. (A 'hazard' is anything with the potential to cause an adverse consequence, such as an injury or illness. Adverse consequences could also involve, damage to equipment or property)
- (3) Identify the IMPACT and LIKELIHOOD terms from the table on the next page.

(i.e. Write down the number used with the Impact & Likelihood terms: e.g. a 'minor' injury = 2 and a 'likely' event = 4).

(4) Estimate the INHERENT RISK (i.e. the risk with no controls applied) by multiplying the IMPACT by the LIKELIHOOD on the coloured MATRIX. (Indicate HIGH, MEDIUM (Med) or LOW on the form and give the overall risk score. e.g. 'minor' impact x 'likely' occurrence is 2x4 = 8 = MED risk).

Risk: Is likelihood of the hazard event occurring and the potential consequences combined. In estimating risk, consider factors that could exacerbate risk, such as reasonably foreseeable emergencies, lone work, inexperience, new & expectant mothers, waste disposal, potential effects on others such as contractors or visitors, etc.

- (5) If the INHERENT RISK is HIGH (RED) or MEDIUM (AMBER) identify CONTROL MEASURES to reduce the risk to as low as is reasonably practicable.
- (6) CONTROL MEASURES should follow the RISK HIERARCHY, where appropriate (as below).

Ris	sk Hierarchy of Co	ontrol		
1.	Eliminate	Remove the hazard wherever possible which negates the need for further controls.	If this is not possible then explain why.	
2.	Substitute	Replace the hazard with one less hazardous.	If not possible then explain why.	
3.	Physical controls	Examples: enclosure, fume cupboard, glove box	Likely to still require admin controls as well.	
4.	Admin controls	Examples: Training, supervision, signage.		
5.	Personal protection	Examples: respirators, safety specs, gloves.	Last resort as it only protects the individual.	\bigtriangledown

- (7) Estimate the RESIDUAL RISK for each hazard. ('Residual' risk is that with controls applied.)
- (8) If the RESIDUAL RISK is MEDIUM (AMBER or score 5 -12) the activity may proceed or can continue, but you must identify and implement further controls to reduce the risk to as low as reasonably practicable.
- (9) If the RESIDUAL RISK is HIGH (RED or score ≥15) <u>DO NOT START OR CONTINUE</u> with the activity until ADDITIONAL CONTROLS have been implemented with the risk reduced.
- (10) The cost of implementing control measures can be taken into account but should be proportional to the risk (i.e. a control to reduce a lower risk (i.e. Medium) many not need to be carried out if the cost is high but a control to manage HIGH risk means that even at high cost the control would be necessary).
- (11) If the INHERENT or RESIDUAL RISK is LOW (GREEN or score 1-4) then ADDITIONAL CONTROLS are not necessary and the activity can proceed.

University of Southampton - Risk Assessment V2.3/OES/2017

Health	& Safet	y: risk	estimat	tion ma	trix
HIGH RISK	If the residu activity un	ial risk is HIGH (til additional co	red or score >15 ntrols have been reduced.) <u>do NOT start o</u> implemented ar	<u>r continue</u> the nd the risk is
MEDIUM RISK	If the residua or continue	l risk is MEDIUM but you must ide the risk to as	l (amber or 5-12 entify and impler s low as reasona	score) the activi nent further con bly practicable.	ty may proceed trols to reduce
LOW RISK	If the risk is	LOW (green or s	core 1-4), additio	onal controls are	not necessary.
	Γ		I	Γ	r
IMPACT: Reasonably foreseeable worst-case consequence	Trivial / Insignificant very minor injury (e.g. slight	Minor Injury or illness: e.g. small cut or abrasion which requires basic first aid treatment even if self- administered.	Moderate	Major Injuries or illness (e.g. broken bones) requiring medical support >4/hr and time off work >4 weeks	Severe Extremely significant tatal or multiple sensus injuries or illess requiring hospital admission or significant time off work.
Hazard Event:	(1)	(2)	(3)	(4)	(3)
Very Likely high probability, 1 in 10 chance or higher, once in two weeks or longer for activities on a daily basis (5)	medium risk 5	medium risk 10	high risk 15	high risk 20	high risk 25
Likely significant probability, 1 in 100 dhance or higher, once in six months or longer for addivities on a daily besis (4)	low risk 4	medium risk 8	medium risk 12	high risk 16	high risk 20
Possible low probability, 1 in 1,000 chance or higher, once in four years or longer for activities on a saily besis (3)	low risk 3	medium risk 6	medium risk 9	medium risk 12	high risk 15
Unlikely very low probability, 1 in 10,000 chance or higher, once in a decade or longer for activities on a daily basis (2)	low risk 2	low risk 4	medium risk 6	medium risk 8	medium risk 10
Rare extremely low probability, 1 in 100,000 ohance. Once in a century of longer for activities on a daily basis (1)	low risk 1	low risk 2	low risk 3	low risk 4	medium risk 5
		Risk score	s are Impact x	Likelihood	
† For likelihood	is in between the listed val	lues, use the higher likelil	hood to estimate risk. The	ese probability definitions	are only a guide.

University of Southampton - Risk Assessment V2.3/OES/2017

You will need the most recent MSDS (available from supplier) and the Guidance Notes (available on NOC H&S Website) to fill out this form. Contact the NOC Safety Adviser for further guidance. This assessment only addresses the risk of harm to health form the substances listed. Additional risk assessment may be required to control the risk from other hazards associated with this workthe procedure used. Approach (ECA) Select from Appendix 3 Exposure Control according to Regulation (EC) No. 453/2010 Version 5.5 Revision Date 28.12.2015 Sigma Aldrich SAFETY DATA SHEET ECA3 Assessor and other signatories to Risk Assessment, COSHH etc ٨ Print Date 01.07.2018 (High / Med / Low) Assess using Appendix 2 Exposure Potential Medium Select from Appendix 1 Persons involved: and revision date: Hazard Group **MSDS** supplier (A,B,C,D,E) A, C Risk Phrases/Hazard Statements (Numbers and wording - full list available on H&S website.). If more than one R-phrases [H-statements] choose one that gives rise to most severe classification. NOCS Research aquarium hatchery and 454/01 TAB TO THE END OF TABLE TO DISERT NEW ROWS CHEMICAL RISK ASSESSMENT FORM Version Sept 2013 Extraction of microplastics from sediment using 7M zinc chloride Chronic aquatic toxicity (Category 1), H410 Location of use: Acute aquatic toxicity (Category 1), H400 Acute toxicity, Oral (Category 4), H302 Skin corrosion (Category 1B), H314 For multiply chemicals what is the highest ECA required for this task? HAZARD IDENTIFICATION AND CONTROL **OES/FNES** ů (As listed in the chemical catalogue or in the MSDS. If mixing chemicals creates a dangerous mixture please note and complete a separate line for this mixture) Will you be using a lower level Chemical(s) or Product Name ECA (only allowed for those denoted by*)? *If yes, list the ECA and justify why?* Lab procedure ref: Describe the task: Department: Zinc chloride

۷

Could a less hazardous s If yes, then detail why this canno	ubstance be used instead? t <i>be used.</i>	No		
Does the substance prese certain groups or individ expectant mothers)	nt additional risks to uals? (e.g. young people,	No		
Do your chemicals have a statements that require a See appendix 1. If yes, complete (available on the H&S website)	risk phrases or hazard DSEAR assessment? and attach a DSEAR Checklist	No		
PERSONAL PROTECT State any PPE required for this t	IVE EQUIPMENT (PPE) ask/method. Include which type and	when the	ty are to be worn. Note: PPE	is to be used as the "last resort".
Eye protection:	Safety goggles should be v when handling zinc chlorid powder or solution	vorn de as	Hand protection:	Wear nitrile gauntlets when handling zinc chloride.
Face protection:	No, work with open solution a fume cupboard	ons in	Special clothing:	None
Respiratory protection: (Requires specialist training & monitoring)	No, as chemicals are handl a fume cupboard	led in	Any others:	Labcoat, closed shoes and long trousers in all cases
EMERGENCY PROCE	DURES			
Eye contact:	Rinse thoroughly with pl	enty of	f water for at least 15	minutes and consult a physician.
Inhalation:	If breathed in, move personal consult a physician	son int	o fresh air. If not brea	athing, give artificial respiration.
Skin contact:	Take off contaminated c water. Consult a physicia	lothing an.	and shoes immediat	ely. Wash off with soap and plenty of
Ingestion:	Do NOT induce vomiting mouth with water. Const	g. Neve ult a ph	er give anything by m nysician.	outh to an unconscious person. Rinse
Spill procedure:	Personal precautions, Use personal protective or gas. Ensure adequate dust. For personal prote Environmental precaut Prevent further leakage Discharge into the environ Methods and materials Pick up and arrange dis suitable, closed contained	protect equipreventil ctions or spill onment s for co posal v ers for	ctive equipment and ment. Avoid dust form lation. Evacuate perso ee section 8. lage if safe to do so. [it must be avoided. ontainment and clea without creating dust. disposal.	emergency procedures nation. Avoid breathing vapours, mist onnel to safe areas. Avoid breathing Do not let product enter drains. aning up Sweep up and shovel. Keep in
HEALTH MONITORIN	G			
Is health surveillance req This is required when: (a) there i adverse change and reduce the r	uired for the protection of th is a disease associated with the subs isk of further harm; (c) the condition the HdxS Website.	he heali stance in ns in the	th of employees? use (eg Asthma, Dermatitis, (workplace make it likely that	Cancers); (b) it is possible to detect the disease or the disease will appear. Please refer to Guidance for
COSHH Health Surveillance on				

٦

Decide whether any	special training is required to carry ou	t the task safely. In most c	ases, on the job training will	be sufficient.	
None					
INSTRUCTIO How should the sub Is there any other si	NS FOR SAFE STORAGE istance be stored? (e.g. locked cupboard ubstance that this substance must not co	which is correctly labell me into contact with?	id, away from other substance	es, etc.)	
7M zine ehlorid	le solutions should be stored as 5	50ml aliquots in scre	w topped falcon tubes o	once produced.	
DISPOSAL PR	ROCEDURES Detail fully how the c	chemical waste is to be di	sposed of (down sink, by spec	ialist contractor, etc)	
Are chemicals	with Risk Phrases R50-R59 (en	vironmental hazard) involved?		
Estates.					-
Are the hazard	s/risks suitably controlled, using	g the control measur	es detailed above? If n	ot, state the further	actions
Are the hazard: required, e.g. R specifying supe Yes, although z	s/risks suitably controlled, using lequirement for a standard oper rvision, etc in the box below. inc chloride solutions should onl	g the control measur ating procedure (SC	res detailed above? If n DP), restricting access, g normal working hours	ot, state the further prohibiting lone wo (0900-1700).	actions rking,
Are the hazards required, e.g. R specifying supe Yes, although z ACCREDITAT I am satisfied that t described to the low	s/risks suitably controlled, using lequirement for a standard oper rvision, etc in the box below. inc chloride solutions should onl FION, VERIFICATION AND he control measures outlined above are a west level reasonably practicable.	g the control measur ating procedure (SC ly be prepared during REVIEW adequate to control the ri	res detailed above? If n OP), restricting access, g normal working hours sks to health from the hazard	ot, state the further prohibiting lone wo (0900-1700).	actions rking, e work activity
Are the hazard: required, e.g. R specifying supe Yes, although z ACCREDITAT I am satisfied that t described to the low Assessor:	s/risks suitably controlled, using lequirement for a standard oper rvision, etc in the box below. inc chloride solutions should onl FION, VERIFICATION AND he control measures outlined above are to rest level reasonably practicable.	g the control measure rating procedure (SC ly be prepared during REVIEW adequate to control the ri Signature:	res detailed above? If n OP), restricting access, g normal working hours is to health from the hazard	ot, state the further prohibiting lone wo s (0900-1700). Jous substances used in th Date:	actions rking, e work activity 12-7-18
Are the hazard: required, e.g. R specifying supe Yes, although z ACCREDITAT I am satisfied that it described to the low Assessor: Approved by:	s/risks suitably controlled, using lequirement for a standard oper rvision, etc in the box below. inc chloride solutions should onl FION, VERIFICATION AND he control measures outlined above are to eest level reasonably practicable. HANNAH BRITTAIN	g the control measur rating procedure (SC ly be prepared during REVIEW adequate to control the ri Signature: Signature:	res detailed above? If n OP), restricting access, g normal working hours sks to health from the hazard	ot, state the further prohibiting lone wo (0900-1700). ious substances used in th Date: Date:	actions rking, e work activity 12-7-18 4-7-18
Are the hazard: required, e.g. R specifying supe Yes, although z ACCREDITA? I am satisfied that it described to the low Assessor: Approved by: Verification by I have read and und	s/risks suitably controlled, using Requirement for a standard oper rvision, etc in the box below. inc chloride solutions should onl FION, VERIFICATION AND the control measures outlined above are to ess level reasonably practicable. HANNAH BRITTAIN	g the control measur rating procedure (SC ly be prepared durin; REVIEW adequate to control the ri Signature: Signature: (fnecessary) is Assessment and agree t	res detailed above? If n OP), restricting access, g normal working hours sks to health from the hazard sks to health from the hazard	ot, state the further prohibiting lone wo s (0900-1700). ious substances used in th Date: 	actions rking, e work activity 12-7-18 4-7-18
Are the hazard: required, e.g. R specifying supe Yes, although z ACCREDITAT I am satisfied that it described to the low Assessor: Approved by: Verification by I have read and une	skrisks suitably controlled, using Requirement for a standard oper rvision, etc in the box below. inc chloride solutions should onl FION, VERIFICATION AND he control measures outlined above are to eest level reasonably practicable. HANNAH BRITTAIN HANNAH BRITTAIN	g the control measure rating procedure (SC ly be prepared during REVIEW adequate to control the ri Signature: Signature: (fnecessary) is Assessment and agree t	res detailed above? If n OP), restricting access, g normal working hours sks to health from the hazard o abide with all safety contro Signature	ot, state the further prohibiting lone wo (0900-1700). lous substances used in th Date: Date:	actions rking, e work activity 12-7-18 4-7-18 Date
Are the hazard: required, e.g. R specifying supe Yes, although z ACCREDITAT I am satisfied that is described to the low Assessor: Approved by: Verification by I have read and une	s/risks suitably controlled, using lequirement for a standard oper rvision, etc in the box below. inc chloride solutions should onl TION, VERIFICATION AND he control measures outlined above are a west level reasonably practicable. HANNAH BRITTAIN HANNAH BRITTAIN	g the control measure rating procedure (SC ly be prepared during REVIEW adequate to control the ri Signature: Signature: if necessary) is Assessment and agree to	res detailed above? If n OP), restricting access, g normal working hours sks to health from the hazard o abide with all safety contro Signature	ot, state the further prohibiting lone wo s (0900-1700). ous substances used in th Date: 	actions rking, e work activity 12-7-18 4-7-18 Date
Are the hazard: required, e.g. R specifying supe Yes, although z ACCREDITAT I am satisfied that it described to the low Assessor: Approved by: Verification by I have read and una	skrisks suitably controlled, using Requirement for a standard oper rvision, etc in the box below. inc chloride solutions should onl FION, VERIFICATION AND he control measures outlined above are to vest level reasonably practicable. HANNAH BRITTAIN HANNAH BRITTAIN	g the control measure rating procedure (SC ly be prepared during REVIEW adequate to control the ri Signature: Signature: if necessary) is Assessment and agree t	res detailed above? If n OP), restricting access, g normal working hours sks to health from the hazard o abide with all safety contro Signature	ot, state the further prohibiting lone wo (0900-1700). ious substances used in th Date: 	actions rking, e work activity 12-7-18 4-7-18 Date

EXPOSURE POTENTIAL	LOW MEDIUM H	Quantity used <1g or ml	Duration \$1-15 min per day >15 min per day	No. of persons 1 to 2 3 to 4 5 or m involved 3 to 4 5 or m 5 or m	BP ≥ 150°C or VP BP 50-150°C or VP BP 50-150°C or VP BP 550 Volatility (liquids) ≤ 500 Pa/3.75 VP 500-25000 Pa/ VP ≥ 25,0 nmHg 3.75 - 187.5 mmHg 187.5 mmHg 187.5 mmHg	Dustiness Pellets and non- dusty solids Granular or crystalline Fine solids: (particulates) dusty solids (coarse dusts) powd	Nature of careful handling Low energy eg pouning from low eginding, hij heights or strinig, use of hand tools High energy, e, grinding, hij of hand tools	Overall Exposure Potential: Lov	The more boxes for individual factors that are ticked on the nght hand side of the form, the higher the overall exposure potential should be. However, the assessment cannot be based Medhi	on a simple count of mgn or low factors, our must rely on the judgement and experience of Hig Hig	Appendix 3: Exposure Control Approach	EXPOSURE CONTROL APPROACH Note: NERC Guidance on 20 Standard Controls must be observed at all time (available on the H&S website)	ECA1: Work in a well constructed laboratory with good general ventilation (an air change rate in excess of 5x a good working practices to minimise spread / generation of high airborne concentrations of hazardous contamina	ECA2: Work undertaken as above but with the application of engineering controls using LEV devices such as e captor hoods or nozzles, partial enclosures with extraction and re-circulating single HEPA filtered enclosures.	ECA3: As ECA 1 plus use of high efficiency partial containment devices such as NERC Class 1 fume cupboard to external atmosphere or, for solids or aerosols, double HEPA filtered powder handling enclosures / safety cabi	ECA4: Specially devised precautions applied after seeking specialist advice and writing a detailed risk assessm precautions applied will involve the higher theses of engineered county and, although finne constraints that the	בטנובאסינונטים שנטעוס טיר בירעו וט טישב וטיום נוגנטסאר טי זוכט סיגו מס מיסטנונטן טי נטומשוורנו איז מטנוסאווני	E ECA3" ECA4"	Hazard Groun of C ECA2* ECA3*	Substance B ECA1 ECA2*	A ECAI ECAI	* These manufact man he united as
		H-statements		H303, H304, H305, H313, H315, H316, H318, H319, H320,	H333, H336 and all H- numbers not otherwise listed		H302, H312, H332, H371	H301, H311, H314,	H335, H370, H373			H300,H310,H330,H351, H360, H361, H362, H377			H334, H340, H341, H350	EAR Assessment	H202, H203, H250	R32)	H224. H240. H241.	1260 H271 (no H	r R31)	
$\mathbf{A} - \mathbf{E}$		R-phrases		R36, R38 and all R-numbers not otherwise	listed		R20/21/22 and R68/20/21/22	R23/24/25,	R39/23/24/25, R39/23/24/25, R41, R43,	R48/20/21/22, R68/23/24/25	R26/27/28,	R39/26/27/28, R40, R48/23/24/25	R60, R61, R62, R63, R64		к42, к49, к40, R49, R68	equiring a DS	H200, H201, F	(no H equiv to	H204, H205, F	H242, H251, F	equiv to R29 o	
Group A		Units	c	"mg/m	udd	ma/m ³	шdd	mg/m ³	maa		mg/m³	800				ments r	ç		15.	31,		
ix 1: Hazard		Concentration range		>1 to 10	>50 to 500	>0.1 to 1	>5 to 50	>0.01 to 0.1	>0.5 to 5		<0.01	<0.5	2.2			Hazard State	1 PK P17 P3). R12. R14. R	, R29, R30, R		
Append		Type		Dust	Vapour	Dust	Vapour	Dust	Vapour		Dust	Vanour		Dust	Vapour	ohrases/	0 D2 D/		7. R8. RG	R18, R19		
		azard roup		۲			в	0						L	Ш	Risk	0 1 0		R5. R	R16, I	R44	

You will need the most recent MSDS (available from supplier) and the Guidance Notes (available on NOC H&S Website) to fill out this form. Contact the NOC Safety. Adviser for further guidance. This assessment only addresses the risk of harm to health form the substances listed. Additional risk assessment may be required to control the risk from other hazards associated with this work the procedure used. according to Federal Register Vol. 77, No. 58 Exposure Control Approach (ECA) Select from Appendix 3 Date of issue: 03.07.2013 Revision Date **ECA1** Assessor and other signatories to Risk Assessment, COSHH etc V LabChem SAFETY DATA SHEET Print Date 12.07.2018 (High / Med / Low) Assess using Appendix 2 **Exposure Potential** Medium 24.10.2017 Cleaning glassware for the extraction of microplastics from sediment using 10% hydrochloric acid solution (A,B,C,D,E) Select from Appendix 1 Persons involved: and revision date: Hazard Group **MSDS** supplier υ Risk Phrases/Hazard Statements (Numbers and wording - full list available on H&S website.). If more than one R-phrases [H-statements] choose one that gives rise to most severe classification. TAB TO THE END OF TABLE TO DISERT NEW ROWS CHEMICAL RISK ASSESSMENT FORM Version Sapt 2013 NOCS 454/01 Causes severe skin burns and eye damage (H314) Location of use: For multiply chemicals what is the highest ECA required for this task? HAZARD IDENTIFICATION AND CONTROL **OES/FNES** ů (As listed in the chemical catalogue or in the MSDS. If mixing chemicals creates a dangerous mixture please note and complete a separate line for this mixture) Will you be using a lower level ECA (only allowed for those Chemical(s) or Product Name If yes, list the ECA and justify why? Lab procedure ref: Describe the task: Hydrochloric acid denoted by*)? Department:

ix

SPECIAL CONSIDERA	TIONS			
Could a less hazardous si If yes, then detail why this cannot	ubstance be used instead? t <i>be used</i> .	No		
Does the substance prese certain groups or individ expectant mothers)	nt additional risks to uals? (e.g. young people,	No		
Do your chemicals have a statements that require a See appendix 1. If yes, complete a (available on the H&S website)	risk phrases or hazard DSEAR assessment? and attach a DSEAR Checklist	No		
PERSONAL PROTECT State any PPE required for this to	IVE EQUIPMENT (PPE) ask/method. Include which type and	when the	ty are to be worn. Note: PPE	is to be used as the "last resort".
Eye protection:	Safety goggles should be w when handling hydrochlori acid solution	vom ic	Hand protection:	Wear nitrile gauntlets and/or tongs when handling hydrochloric acid solution
Face protection:	No		Special clothing:	None
Respiratory protection: (Requires specialist training & monitoring)	No		Any others:	Labcoat, closed shoes and long trousers in all cases
EMERGENCY PROCEI	DURES			•
Eye contact:	Rinse cautiously with wa easy to do. Continue rins	iter for sing ar	several minutes. Rei nd consult a physiciar	move contact lenses, if present and n.
Inhalation:	Move person into fresh a	air and	keep comfortable for	r breathing. Consult a physician
Skin contact:	Take off contaminated c water. Consult a physicia	lothing an.	and shoes immediat	ely. Wash off with soap and plenty of
Ingestion:	Rinse mouth with water. unconscious person. Co	Do NO nsult a	OT induce vomiting. N a physician.	Vever give anything by mouth to an
Spill procedure:	Personal precautions, Use personal protective mist/vapours/spray. Eva Environmental precaut Prevent further leakage comply with local, state a Methods and materials Pick up and arrange disp containers for disposal.	protect equipr cuate tions or spill and feat for co posal v	ctive equipment and ment. Ensure adequa personnel to safe are lage if safe to do so. I deral regulations. ontainment and clea without creating vapor	l emergency procedures te ventilation. Do not breathe as. Dispose of contents/container to aning up urs or mist. Keep in suitable, closed
HEALTH MONITORIN	с.			
ILEALTH MONITORIN Is health surveillance reg This is required when: (a) there i adverse change and reduce the ri COSHH Health Surveillance on t	uired for the protection of th is a disease associated with the subs isk of flather harm; (c) the condition the H&S Website.	te heal tance in the in the	th of employees? use (eg Asthma, Dermatitis, (workplace make it likely that	Cancers); (b) it is possible to detect the disease or the disease will appear. Please refer to Guidance for
No				

- machine un	AINING REQUIREMENTS y special training is required to carry out	t the task safely. In mo:	st cases, on the job training will	be sufficient.	
None					
INSTRUCTIO How should the su Is there any other :	ONS FOR SAFE STORAGE bstance be stored? (e.g. locked cupboard ubstance that this substance must not co	which is correctly lab me into contact with?	eiled, away from other substance	es, etc.)	
Stored in plasti	c containers. Waste HCl can be d	liluted with copiou	15 amounts of water and 17	un to waste.	
DISPOSAL P	ROCEDURES Detail fully how the c	chemical waste is to be	disposed of (down sink, by spec	ialist contractor, etc)	
Are chemicals	with Risk Phrases R50-R59 (env	vironmental hazar	rds) involved?		
Dilute HCl solv	ation with large volume of water	and run to waste.			
ASSESSMEN Are the hazard required, e.g. 1 specifying sup	T OF RISK USING CONTROI s/risks suitably controlled, using Requirement for a standard oper- ervision, etc in the box below.	LS DETAILED A g the control meas ating procedure (ABOVE sures detailed above? If n SOP), restricting access,	ot, state the further prohibiting lone wo	actions rrking,
Yes, although l	nydrochloric acid solution should	only be used duri	ng normal working hours	(0900-1700).	
Yes, although l ACCREDITA I am satisfied that described to the low	nydrochloric acid solution should TION, VERIFICATION AND the control measures outlined above are o west level reasonably practicable.	only be used duri REVIEW adequate to control the	ng normal working hours rrisks to health from the hazard	(0900-1700). ous substances used in th	ie work activity
Yes, although l ACCREDITA I am satisfied that described to the lot Assessor:	nydrochloric acid solution should TION, VERIFICATION AND the control measures outlined above are of west level reasonably practicable. HANNAH BRITTAIN	e only be used duri REVIEW adequate to control the Signature:	ng normal working hours erisks to health from the hazard	(0900-1700). ous substances used in th Date:	e work activity 11-7-18
Yes, although l ACCREDITA I am satisfied that described to the lo Assessor: Approved by:	nydrochloric acid solution should TION, VERIFICATION AND the control measures outlined above are a west level reasonably practicable. HANNAH BRITTAIN	only be used duri REVIEW adequate to control the Signature: Signature:	ng normal working hours	(0900-1700). ous substances used in th Date: Date:	e work activity 11-7-18
Yes, although l ACCREDITA I am satisfied that described to the lo Assessor: Approved by: Verification by I have read and un	nydrochloric acid solution should TION, VERIFICATION AND the control measures outlined above are a west level reasonably practicable. HANNAH BRITTAIN USETS (Continue on a separate sheet if derstood the information contained in thi	nly be used duri REVIEW adequate to control the Signature: Signature: (necessary) is Assessment and agree	ng normal working hours e risks to heaith from the hazard	(0900-1700). ous substances used in th Date: Is.	e work activity
Yes, although l ACCREDITA I am satisfied that described to the lo Assessor: Approved by: Verification by I have read and un	nydrochloric acid solution should TION, VERIFICATION AND the control measures outlined above are a west level reasonably practicable. HANNAH BRITTAIN ANNAH BRITTAIN () () () () () () () () () ()	nly be used duri REVIEW adequate to control the Signature: (necessary) s Assessment and agree	ng normal working hours rrisks to health from the hazard re to abide with all safety contro Signature	(0900-1700). ous substances used in th Date: is.	ne work activity 11-7-18 Date
Yes, although l ACCREDITA I am satisfied that described to the lo Assessor: Approved by: Verification by I have read and un	nydrochloric acid solution should TION, VERIFICATION AND the control measures outlined above are a west level reasonably practicable. HANNAH BRITTAIN UNAL BRITTAIN V users (Continue on a separate sheet if derstood the information contained in this Name	only be used duri REVIEW adequate to control the Signature: Signature: (necessary) s Assessment and agre	ng normal working hours e risks to health from the hazard e to abide with all safety contro Signature	(0900-1700). ous substances used in th Date: Is.	ne work activity 11-7-18 Date
Yes, although l ACCREDITA I am satisfied that described to the lo Assessor: Approved by: Verification by I have read and un	nydrochloric acid solution should TION, VERIFICATION AND the control measures outlined above are a west level reasonably practicable. HANNAH BRITTAIN HANNAH BRITTAIN Users (Continue on a separate sheet if derstood the information contained in thi Name	e only be used duri REVIEW adequate to control the Signature: (necessary) is Assessment and agree	ng normal working hours e risks to health from the hazard e to abide with all safety contro Signature	(0900-1700). ous substances used in th Date: Is.	ne work activity 11-7-18 Date

I

	Append	lix 1: Hazard	Group	$\mathbf{A} - \mathbf{E}$		EXPOSURE POTH	ENTIAL			
							TOW	MEDI	UM	HIGH
Hazard Group	Type	Concentration range	Units	R-phrases	H-statements	Quantity used	<1g or ml	1 to 100g or 1	nl	>100g or ml
			۲. ۱			Duration	$\leq 1 \min per day$	> 1- 15 min per	day	> 15 min per day
۲	Dust	>1 to 10	mg/m ²	R36, R38 and all R-numbers not otherwise	H303, H304, H305, H313, H315, H316, H318, H319, H320,	No. of persons involved	1 to 2	3 to 4		5 or more
	Vapour	>50 to 500	mqq	listed	H333, H336 and all H- numbers not otherwise listed	Volatility (liquids)	BP ≥ 150°C or VP ≤ 500 Pa / 3.75 mmHg	BP 50 – 150°C VP 500 – 25000 3.75 – 187.5 m	t or) Pa/ nHg	BP ≤ 50°C or VP ≥ 25,000 Pa/ 187.5 mmHg
	Dust	×0.1 to 1	mg/m ³			Dustiness (particulates)	Pellets and non- dusty solids	Granular or cryst (coarse dusts	alline s)	Fine solids and light powder
в	Vapour	>5 to 50	шdd	R20/21/22 and R68/20/21/22	H302, H312, H332, H371	Nature of operation	Low energy eg careful handling	Medium energy pouring from 1 heights or stirring of hand tool	e.g. ow s	High energy, e.g. sprayin grinding, high speed stirring, sonication etc
C	Dust	>0.01 to 0.1	mg/m ³	R23/24/25,	H301, H311, H314, 11247, 11240, 11224	Overall Exposure I	Potential:			Law
J	Vapour	>0.5 to 5	maa	R39/23/24/25, R39/23/24/25, R41, R43,	H335, H370, H373	The more boxes for indiv higher the overall exposu	ridual factors that are ticked the potential should be. How	l on the right hand side of vever, the assessment can	the form, the not be based	Medium
				R48/20/21/22, R68/23/24/25		on a surple count of mgr the assessor.	i of low factors, but must re	rly on the Judgement and e	io apience or	High
	Dust	<0.01	mg/m ³	R26/27/28		Appendix 3: Exposu	re Control Approacl	-		
0	Vapour	202 202	Eud	R39/26/27/28, R40, R48/23/24/25	H300,H310,H330,H351, H360, H361, H362, H372	EXPOSURE CON Note: NERC Guidance o	TROL APPROACH on 20 Standard Controls m	ust be observed at all tim.	e (available on ti	ie H&S website)
		2		R60, R61, R62, R63, R64	4	ECA1: Work in a well co good working practices to	onstructed laboratory with goneration on minimise spread / generation	good general ventilation (a tion of high airborne conce	m air change rate entrations of haza	in excess of 5x per hour) urdous contaminants.
L	Dust	1			PRCH OPCH FCCH	ECA2: Work undertaken captor hoods or nozzles, j	t as above but with the appl partial enclosures with extr	ication of engineering con action and re-circulating	trols using LEV single HEPA filte	devices such as extract gril ered enclosures.
	Vapour			R49, R68	H350	ECA3: As ECA 1 plus us to external atmosphere or	se of high efficiency partial r, for solids or aerosols, dou	containment devices such the HEPA filtered powder	1 as NERC Class r handling enclos	1 fume cupboards which a ures / safety cabinets.
Risk	Phrases	/Hazard State	ments	requiring a D	SEAR Assessment	ECA4: Specially devised precautions applied will i	l precautions applied after s involve the highest levels o	eeking specialist advice a f engineered controls and,	nd writing a detai although fume ci	tied risk assessment. The upboards may be appropria
				H200 H201	H202 H203 H250	consideration should be g appropriate.	given to using total enclosu	re devices such as a dedica	ated laboratory or	r containment suite may ais
RI, R	U, RJ, R	4, R6, R17, R	22	(no H equiv to	o R32)		E	ECA3*	ECA4*	ECA4
							D	ECA3*	ECA3*	ECA4*
R5, R	t7, R8, R	9, R12, R14, F	U5,	H204, H205,	H224, H240, H241,	Hazard Group of	с	ECA2*	ECA3*	ECA3
R16,	R18, R1	9, R29, R30, R	<u> </u>	H242, H251,	H260 H271 (no H	Substance	В	ECA1	ECA2*	ECA2
ŧ				equiv to N29	(10/10)		Ą	ECA1	ECA1	ECA2*
						* These approach	es may be varied or	Low	Medium	High
						relaxea (e.g. ine ne as instified hvo	XX IOWEr ECA USEA) wich accoccment	6	verall Exposure	Potential

Sediment Sample	Repeat	Wet (g)	Oven	In	Out	# days	Dry weight (g)	Weight loss (%)
Cleaned sedim	ent							
Hayling Island	1	770.3	autoclave	09-Jul	12-Jul	3	610.1	20.8
	2	1083.4	autoclave	10-Jul	13-Jul	3	868.3	19.9
	3	831.9	autoclave	20-Jul	23-Jul	3	677.8	18.5
Jersey samples	s							
St Aubins	1	851.2	autoclave	10-Jul	19-Jul	9	674.1	20.8
	2	735.0	autoclave	10-Jul	16-Jul	6	581.4	20.9
St Brelades	1	510.9	autoclave	10-Jul	16-Jul	6	414.2	18.9
	2	581.7	autoclave	10-Jul	17-Jul	7	464.7	20.1
	3	494.5	autoclave	18-Jul	23-Jul	5	403.7	18.4
La Pulante	1	497.4	autoclave	10-Jul	12-Jul	2	486.9	2.1
	2	572.0	autoclave	10-Jul	12-Jul	2	558.1	2.4
L'Etacq	1	1001.9	autoclave	10-Jul	16-Jul	6	804.6	19.7
	2	857.8	autoclave	10-Jul	18-Jul	8	686.0	20.0
Greve	1	504.4	lab oven	09-Jul	16-Jul	7	487.5	3.4
	2	599.1	lab oven	09-Jul	16-Jul	7	582.6	2.8
St Catherines	1	471.4	lab oven	09-Jul	19-Jul	10	377.6	19.9
	2	554.4	lab oven	09-Jul	18-Jul	9	474.1	14.5
	3	506.5	autoclave	18-Jul	25-Jul	7	454.7	10.2
Long Beach	1	549.0	lab oven	09-Jul	16-Jul	7	519.4	5.4
	2	523.8	lab oven	09-Jul	16-Jul	7	490.4	6.4
Harve des Pas	1	516.6	lab oven	09-Jul	18-Jul	9	448.5	13.2
	2	512.1	lab oven	09-Jul	19-Jul	10	417.2	18.5
	3	501.9	autoclave	18-Jul	25-Jul	7	410.6	18.2
Mean average	sediment v	veight loss	from drying	(%):				14.3
Maximum sediment weight loss from drying (%): 20								
Oven temperat	ures							
Lab oven: 60°C								
Autoclave: 120°	С							
Dry weight								
< 500 g after dry	ying							
> 500 g after drying								

SEDIMENT DRYING REGIME RESULTS

 Table i Sediment samples drying regime, including before and after weights.

CATALOGUE DETAILS FOR MICROPLASTIC COLOUR EXAMPLES

Full details of the photographs included in Figure 3.2, depicting microplastics of different colours under the SCS System extracted from Jersey sediments.

- (i) Beige (BG): MMP/MFR/BG from LB2 C1 (photo #135, 23/08/18).
- (ii) Black (BK): MMP/MBD/BK from LB1 C1 (photo #17, 28/08/18).
- (iii) Blue (BL): MMP/MFB/BL from LE2 C2 (photo #93, 27/08/18).
- (iv) Brown (BN): MMP/MFR/BN from LE2 C2 (photo #89, 27/08/18).
- (v) Clear (CL): MMP/MFR/CL from LB1 C2 (photo #27, 23/08/18).
- (vi) Green (GN): MMP/MFB/GN from LB2 C1 (photo #142, 23/08/18).
- (vii) Grey (GY): MMP/MFR/GY from LB1 C1 (photo #21, 28/08/18).
- (viii) Metallic (MT): MMP/MFR/MT from LE1 C1 (photo #72, 25/08/18).
- (ix) Olive (OL): MMP/MFR/OL from LE1 C1 (photo #47, 25/08/18).
- (x) Orange (OR): MMP/MFR/OR from LE1 C1 (photo #66, 25/08/18).
- (xi) Pink (PK): MMP/MFB/PK from LE2 C2 (photo #7, 27/08/18).
- (xii) Red (RD): MMP/MFB/RD from LB1 C2 (photo #17, 23/08/18).
- (xiii) Speckled (SP): MMP/MFR/SP from LB1 C1 (photo #42, 28/08/18).
- (xiv) Transparent (TP): MMP/MFR/TP from LB1 C1 (photo #56, 28/08/18).
- (xv) Turquoise (TQ): MMP/MFB/TQ from LE2 C2 (photo #92, 27/08/18).
- (xvi) Violet (VT): MP/FB/VT from LE1 C1 (photo #42, 25/08/18).
- (xvii) White (WT): MMP/MFM/WT from LE1 C1 (photo #77, 25/08/18).
- (xviii) Yellow (YL): MMP/MFR/YL from LE2 C1 (photo #92, 26/08/18).
GRAIN SIZE ANALYSIS DATA AND DISTRIBUTION GRAPHS

	Class Weight Retained (g) in Different Samples								
Sample name:	St Aubins 1	St Aubins 2	L'Etacq 1	L'Etacq 2	Long Beach 1	Long Beach 2	Spiked (PA)	Spiked (PS)	Spiked (PVC)
Initial Sample Weight (g):	500.00	500.00	500.00	500.00	500.00	500.00	500.00	500.00	500.00
Post-Analysis Sample Weight (g)	449.66	420.67	329.76	486.28	493.38	488.26	491.04	492.75	484.89
Aperture (µm)									
38.00	8.24	6.17	0.00	0.00	0.01	0.00	0.23	0.28	0.29
63.00	71.85	60.27	0.04	0.03	0.06	0.07	1.37	1.98	1.79
90.00	348.04	336.87	3.38	4.03	8.32	12.53	42.60	45.36	45.07
125.00	19.34	15.56	86.98	105.18	52.38	66.50	165.67	153.42	174.58
180.00	1.76	1.42	225.17	354.93	143.43	145.65	223.19	239.54	208.73
250.00	0.35	0.25	12.59	19.32	126.10	108.74	22.70	21.40	20.88
355.00	0.07	0.07	1.30	2.21	83.36	61.70	6.60	5.90	5.99
500.00	0.01	0.03	0.29	0.44	59.87	56.42	5.07	4.65	4.70
710.00	0.00	0.01	0.01	0.08	14.73	22.98	3.78	3.37	3.53
1000.00	0.00	0.02	0.00	0.06	5.12	13.67	19.83	16.85	19.33

Table ii Grain size analysis raw data for all sediment samples

An explanation of how the grain size data was obtained through GRADISTAT Version 8.0 (Blott and Pye, 2001) using the above raw data is given below:

"The sample statistics are calculated using the Method of Moments in Microsoft Visual Basic programming language: mean, mode(s), sorting (standard deviation), skewness, kurtosis, D₁₀, D₅₀, D₉₀, D₉₀/D₁₀, D₉₀-D₁₀, D₇₅/D₂₅ and D₇₅-D₂₅. Grain size parameters are calculated arithmetically and geometrically (in microns – μ m) and logarithmically (using the phi scale – ϕ) (Krumbein and Pettijohn, 1938). Linear interpolation is also used to calculate statistical parameters by the Folk and Ward (1957) graphical method and derive physical descriptions (such as "very coarse sand" and "moderately sorted"). The program also provides a physical description of the textural group which the sample belongs to and the sediment name (such as "fine gravelly coarse sand") after Folk (1954). Also included is a table giving the percentage of grains falling into each size fraction, modified from Udden (1914) and Wentworth (1922). In terms of graphical output, the program provides graphs of the grain size distribution and cumulative distribution of the data in both metric and phi units, and displays the sample grain size on triangular diagrams." (Blott and Pye, 2001).

Figure i Grain size analysis data and distribution graph for SA1

Figure ii Grain size analysis data and distribution graph for SA2

Figure iii Grain size analysis data and distribution graph for LE1

Figure iv Grain size analysis data and distribution graph for LE2

Figure v Grain size analysis data and distribution graph for LB1

Figure vi Grain size analysis data and distribution graph for LB2

Figure vii Grain size analysis data and distribution graph for PA

Figure viii Grain size analysis data and distribution graph for PS

Figure ix Grain size analysis data and distribution graph for PVC