

Dandara Jersey Ltd

Cyril Le Marquand House, The Parade, St Helier, JE2 3QP

Geotechnical Investigation Phase II Intrusive Investigation and Risk Assessment

PROJECT NO: 2033

Unit 1 Thistle Grove St Lawrence Jersey JE3 1NN Channel Islands Jersey Registered Company No. 73424 GST Registration No. 0003946 Director:

M F Warner BSc MSc DIC CEng FICE MCIArb Registered Geotechnical Adviser

Tel: 44(0) 1534 863545 Fax: 44(0) 1534 862474 Website: <u>www.AmplusLtd.com</u> Email:

admin@AmplusLtd.com

August 2021

DOCUMENT VERIFICATION

Job title: Job number: Document title: Document reference:	Cyril Le Marquand House, The Parade, St Helier 2033 Phase II Intrusive investigation and risk assessment report 2033
Prepared by:	Matthew F Warner CEng FICE
Signed:	
Date:	26.08.2021
Checked by:	Deborah D Tett BSc
Signed:	
Date	26.08.2021
Approved by:	Matthew F Warner CEng FICE
Signed:	
Date:	26.08.2021

REVISION RECORD

Revision	Date	File Name	Description	Prepare	Check	Approved
		-				

Amplus Ltd Foundation and Geotechnical Specialists

٦

Cyril Le Marquand House (CLMH), The Parade, St Helier, JE2 3QP

Phase II Intrusive investigation and risk assessment Component and Objectives Relevant Information

TABLE OF CONTENTS

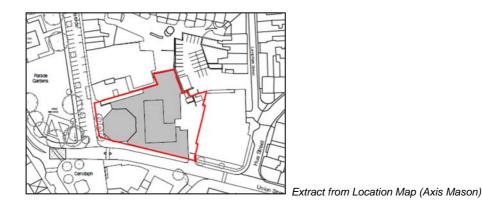
1	DES	IGN OF INVESTIGATION	1
	1.1 1.2 1.3 1.4	BACKGROUND EXTENT OF PROPOSED WORK DETAILS OF SAMPLING AND TESTING PROGRAMME BASED ON FINDINGS PHASE I DATA DETAILS OF POTENTIAL CONTAMINATION MIGRATION OR POTENTIAL RISKS OF PERFORMING THE INTRUSIVE INVESTIGATION	2 2
	1.5	INDICATION OF HEALTH AND SAFETY IMPLICATIONS OF PROPOSED WORKS.	3
2	ΙΝΤΙ	RUSIVE INVESTIGATION	4
	2.1 2.2	APPROPRIATE SUPERVISION BY A SUITABLY QUALIFIED ENGINEER MEASURES TO STOP CROSS-CONTAMINATION	
3	REF	ORTING	5
	3.1 3.2 3.3 3.4	DETAILS OF ALL SAMPLING POINTS, DEPTHS, METHODOLOGY AND PROCEDURES MONITORING AND ALL RESULTS (SEE APPENDICES FOR DETAILS) REFERENCE TO ANY EARLIER SITE INVESTIGATION REPORTS LONG TERM MONITORING FOR GASES AND GROUNDWATER - THAT MAY ALSO BE ONGOING	6 6
4	ENV	IRONMENTAL RISK ASSESSMENTS	6
	4.1 4.2 4.3	PERFORM SITE-SPECIFIC RISK ASSESSMENT (REFINE THE CONCEPTUAL MODEL). DETAIL ALL METHODS USED, THE ASSUMPTIONS MADE AND REFERENCES. PROVIDE FULL DISCUSSION OF CONCLUSIONS REACHED REFERENCED TO THE "SUITABLE FOR USE APPROACH TO DEVELOPMENT AND SITE UTILISATION.	7 ="
5	GEC	DTECHNICAL RISK ASSESSMENTS	8
	5.1 5.2 5.3 5.4	FOUNDATION CONSIDERATIONS PROPOSED DEVELOPMENT GROUND CONDITIONS BEARING CAPACITY AND SETTLEMENT	8 8
6	EAF	THWORKS	11
7	GRO	DUND AGGRESSIVITY	11
8	BAS	SEMENT CONSIDERATIONS	12
	8.1 8.2 8.3	BASEMENT RETAINING WALL BASEMENT SLAB BASEMENT EXCAVATION	13
9	GRO	OUND WATER CONSIDERATIONS	14
	9.1	CONTROL OF GROUNDWATER	15
•			

APPENDICES 1-4 FIGURE 1 DRAWING 1

Cyril Le Marquand House (CLMH), The Parade, St Helier, JE2 3QP

Phase II Intrusive Investigation and Risk Assessment Component and Objectives Relevant Information

1 DESIGN OF INVESTIGATION


Objective - to ensure that sufficient information is gathered from the site or site areas identified in Phase I to carry out the risk assessment.

1.1 Background

Planning Application Number - P/2021/0669.

Application Address:

Cyril Le Marquand House, The Parade, St Helier, JE2 3QP

Description of Work:

Demolish existing office building and associated podium car park structure. Construct 7 storey office building with associated landscaping and public realm improvements. 3D model available. AMEMDED PLAN REC'D.

Extract from Proposed Plan (Axis Mason)

Conditions relevant to this report:

Built-Up Area, Primary Route Network, Regeneration Zone, Town Centre, Town of St. Helier.

Extract from South Elevation (Axis Mason)

Extract Proposed Section B-B (Axis Mason)

1.2 Extent of proposed work

The Jersey grid reference is 564897E 4488598N. The ground level is +9.0m above local Jersey Datum.

Extract Existing Site (Axis Mason)

The scope includes to demolish the existing office building and associated podium car park structure and construct a 7-storey office building.

1.3 Details of sampling and testing programme based on findings phase I data.

Amplus carried out the following report:

Job title: Cyril Le Marquand House (CLMH), St Helier, Job number: 2033 Document title: Geoenvironmental Site Assessment Phase I Desk study, site walkover and risk assessment, Document reference: 2033. Date: 4th August 2020

Sampling and testing programme:

The original scope of the intrusive investigation was specified by the design team and comprised:

Ref.	Туре	Depth (m bgl)	Sampling and Testing	Instrumentation	Laboratory Testing
01	BH	16.45	Rotary coring & sampling, SPT	None	Geo & Contam
02	BH	16.80	Rotary coring & sampling, SPT	None	Geo & Contam
03	BH	16.20	Rotary coring & sampling, SPT	Piezometer (RZ: 6.0-10.0m)	Geo & Contam

Summary of Exploratory Holes:

BH: vertical borehole WS: window sampling

DCP: dynamic cone penetration test SPT: standard penetration test

Extract form Dandara Survey

Geo: Geotechnical testing

RZ: Response zone

Contam: Contamination testing

Amplus drillers, who are trained in accordance with the British Drilling Association and CITB guidelines, carried out all drilling and all recovered samples were logged by a Geotechnical Engineer.

Geotechnical and analytical testing was carried out using UKAS and MCERTS laboratories in the UK. The testing regime on samples recovered from the investigation.

1.4 Details of potential contamination migration or potential risks of performing the intrusive investigation.

Aspects to be considered during the investigation of potentially contaminated sites are given in Appendix 1.

1.5 Indication of Health and Safety implications of proposed works.

BS 5930:2015 - Code of practice for site investigations and CIRIA (Construction Industry Research and Information Association) report 132 A Guide for Safe Working on Contaminated Sites were used for technical guidance.

The implications of the works are given due consideration by the attention of the following procedures carried out during the intrusive site investigation, namely:

- Health and safety procedures
- Controlled entry
- Site zoning
- Good hygiene
- Monitoring
- Appropriate disposal of wastes
- Safe handling, storage, and transport of hazardous samples
- Control of nuisance
- Emergency procedures
- Provision of appropriate training
- Need for routine health surveillance.

Health and Safety implications of proposed works considered during the investigation of potentially contaminated sites are also given in more detail in Appendix 1.

2 INTRUSIVE INVESTIGATION

Objective - to provide high quality information for the Phase II environmental risk assessment.

2.1 Appropriate supervision by a suitably qualified engineer

Amplus is a member of the Association of Geotechnical and Geoenvironmental Specialists.

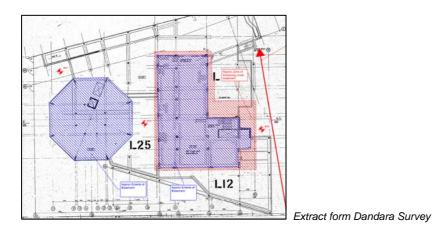
The investigation was supervised by Matthew Warner, a Chartered Engineer and UK Registered Ground Engineering Advisor.

Amplus drillers are trained in accordance with the British Drilling Association and CITB guidelines.

2.2 Measures to stop cross-contamination

Chain of custody for samples, appropriate sampling containers and storage/dispatch times.

The works were carried out in accordance with AGS Guide to Environmental Sampling, 2010, which provides practical guidance on the mechanics of the environmental sampling of soils, liquids, and gasses to improve consistency in approach across the industry and summarise current best industry practice on:


- The mechanics of sampling differing media,
- The avoidance of cross contamination,
- The use of blank, duplicate and trip samples,
- Suitability of sample containers, transport, and recording.

Laboratory involved and whether accredited, methods used:

Analytical testing was undertaken by Geotechnical Engineering Ltd and ALS; UKAS and MCERTS laboratories respectively in the UK.

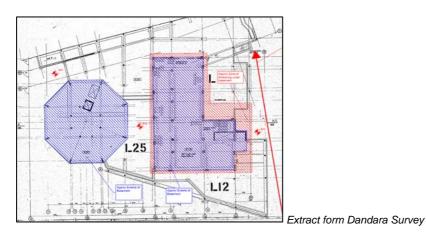
Borehole logs, ground water levels, and location plan: Borehole logs and ground water levels in Appendix 2

A site location plan and exploratory hole positions are shown below.

Site has been left in a safe and secure state:

The site was left in a safe and secure state.

3 REPORTING


Objective - to present full and accurate information for risk assessment.

3.1 Details of all sampling points, depths, methodology and procedures.

The physical number, location and spacing of sampling and monitoring points across the site and within an exploratory hole were guided by the project specification.

The investigation was carried out with reference to BS 5930:2015 Code of practice for site investigations and BS 10175: +A1:2013 - Investigation of potentially contaminated sites. Code of practice.

A location plan is given below with exploratory hole positions.

3.2 Monitoring and all results (see Appendices for details).

Borehole logs of exploratory holes and ground water levels are in Appendix 2.

The laboratory tests are given in Appendix 3. The tests included:

- BS EN ISO 17892-1: 2014:5. Water Content
- BS EN ISO 17892-4: 2016: 5.2, Particle Size Distribution Wet Sieve
- ISRM: 2007: Point Load Strength Test
- BS EN ISO 17892-4: 2016: 5.4, Particle Size Distribution Pipette
- BRE SD1 Suite
- Landfill Acceptance

3.3 Reference to any earlier site investigation reports.

Reference was made to the Amplus desk Study report that did not find evidence of significant land quality impairment potential.

3.4 Long term monitoring for gases and groundwater - that may also be ongoing.

One standpipe piezometer was installed in a borehole for long-term water level monitoring.

4 ENVIRONMENTAL RISK ASSESSMENTS

Objective - to identify if any source pathway- receptor Significant Pollutant Linkages (SPL) are present on site and establish if Phase III remediation/risk management is required.

4.1 Perform site-specific risk assessment (refine the Conceptual Model). Conceptual Site Model:

Source Pathway Receptor Risk and Comment

 Organics from previous car parking activities Pathway - Ingestion / Dermal Contact Receptor - Human Health Risk - Low – Made ground will be removed as part of new construction.

Pathway - Inhalation of Vapour Receptor - Human Health Risk - Low – Petrol vapour evaporates, diesel vapour is of low toxicity but nuisance from odour is possible.

Pathway - Vertical / lateral migration of contaminants in soils Receptor - Controlled waters Risk – Low to Medium – The site is protected by the low permeability concrete slab surface.

 Asbestos from previous building Pathway - Ingestion / Dermal Contact Receptor - Human Health Risk – Moderate to Low – made ground will be removed as part of new construction – carry out asbestos survey and monitoring (not part of this investigation).

3	Sulphate –naturally occurring soils, made ground, or imported soils
	Pathway - Direct Contact
	Receptor - Built Structures
	Risk - Low –Sulphate contents not anticipated to be abnormal in natural strata.

Ground Gas (Radon)
 Pathway - Emission though soils
 Receptor - Human Health
 Risk - Low – Naturally occurring radon might be present at the site, but residential building codes require its presence to be militated against.

CIRIA (Construction Industry Research and Information Association) report 132 A Guide for Safe Working on Contaminated Sites 2.

4.2 Detail all methods used, the assumptions made and references.

The analytical laboratory tests included Landfill Acceptance on samples of soil from each borehole at shallow depths (<1.25m) which are most likely to be excavated and removed from site during the development as there is generally no new substructure.

The results are intended to give baseline readings for the risk assessment.

4.3 Provide full discussion of conclusions reached referenced to the "suitable for use" approach to development and site utilisation.

Analytical testing included Landfill Acceptance. The Solid Waste Analysis included:

- ANC to pH 4 (mol/kg)
- ANC to pH 6 (mol/kg)
- pH (pH Units)
- PAH Sum of 17 (mg/kg)
- Mineral Oil (mg/kg)
- Sum of 7 PCBs (mg/kg)
- Sum of BTEX (mg/kg)
- Loss on Ignition (%)
- Total Organic Carbon (%)

The results of the samples tested classified them as all inert waste apart from loss on ignition in BH2 which may relate to the timber observed in the made ground which will no doubt be picked out before tipping at La Collette.

A BRE Suite of sample testing was carried to assess the aggressivity of the ground on buried concrete. Six soil samples were tested. The measured water-soluble sulphate level was a maximum of 340mg/l as SO4 thus classifying it in Design Sulfate Class DS-1. The results of geochemical tests carried out on samples taken during the ground investigation indicate that the site can be classified as class DS-1 and ACEC Class AC-1 in accordance with BRE Special Digest 1:2005.

A watching brief should be carried out during excavation to review these observations.

5 GEOTECHNICAL RISK ASSESSMENTS

Objective - to identify if any significant geotechnical risks likely to impact on the proposed development.

5.1 Foundation considerations

This section of the report considers the foundation design aspects in relation to the ground conditions encountered at the site and the proposed development.

Foundation considerations include a discussion of the foundation systems best suited for the project, indicate allowable bearing capacities, and anticipated settlements together with construction methods and possible construction problems.

5.2 Proposed Development

The proposed development includes to demolish the existing office building and associated podium car park structure and construct a 7-storey office building. There is a small basement.

Extract from Proposed Site Plan (Axis Mason)

5.3 Ground Conditions

St Helier is located on a triangular embayment cut into the southern side of the tilted plateau of Jersey. The base of the embayment extends along the coast in a southeast to north-west direction, from the Fort Regent promontory to west Mount, with the apex about 1.2 km to the north-east (inland) at Steep Hill.

The hydrogeological map of Jersey (British Geological Survey, 1992) indicates that the bedrock beneath the greater part of the area, and specifically in the Parade area, is composed of the Brioverian Jersey Shale Formation.

The greater part of the embayment is shown to be infilled with a variable thickness of Quaternary, alluvial deposits, brought in by the streams draining the upland areas to the north of the town. A strip extending some 300 metres inland from the line of the Esplanade (including the Castle Street/Esplanade site) is recorded as blown sand. Post-Glacial infilling of the embayment has taken place during a time of rising sea level and the alluvial materials extend seaward beneath the blown sands.

Borehole records within the town (Jones, Keen, Birnie and Waton, 1990) indicate sequences of peaty and silty clays, often overlying gravel horizons, and extending to depths of up to 7.8 metres (approximately 1 metre below Jersey datum) whilst trial borings in the area between Castle Street, Seaton Place and The Esplanade show a variable thickness of made ground, underlain by up to 4 metres thick, with underlying mixed gravel, sands and silty clays resting on bedrock at about 12 to 14 metres below ground, that is to approximately 7 metres below Jersey datum.

Under undisturbed conditions the alluvial sediments of the embayment would be expected to act as a drainage blanket for the surrounding upland areas of Jersey. Shales and volcanic bedrock, with groundwaters discharging to the sea by seepage through the beach and, possibly, by discrete spring flows. Groundwater levels would be expected to be at a relatively shallow depth (<10 metres), because of the low-lying nature of the embayment, with regular level fluctuations due to tidal influences affecting the water-table at the seaward end of the embayment.

At this site, the Made Ground relates to previous construction and particularly the existing sib-structure under the present CLMH office building.

Ground conditions are given in detail in the borehole logs in Appendix 1 and are summarised below:

Geology	Brief description of strata	Depth range, m bgl		n bgl
		BH1	BH2	BH3
MADE GROUND – granular backfill and concrete				
		0.60	2.65	5.52
OVERBURDEN – interbedded clays, silts,				
sands, and gra	avels	11.37	11.73	11.13
MUDSTONE (Bedrock) – Jersey Shale			
Formation		*16.45	*16.80	*16.20

* Final depth of borehole

The soils and rock revealed in the boreholes fit well with the known geology of the area. A plot of water content vs depth, Figure 1, shows a higher water content in the upper cohesive soils (*/-7m bgl) and a lower, more variable water content in the underlying more granular deposits.

Of note is the strong concrete sample tested, UCS 44MPa, recovered in BH3 which forms part of the reinforced concrete basement of the current building.

Water levels are given in the borehole logs in Appendix 2 and post-fieldwork levels are given below for 15th July 2021:-

BH	Depth of water m bgl
3	1.31

As always, water levels will be subject to seasonal change and, this case, tidal conditions close to the marina.

Post-fieldwork ground gas monitoring from BH3 will be reported in an Addendum to this document.

5.4 Bearing Capacity and Settlement

We understand the proposed new development will be supported on new piles bored through or between the existing piles under the current building.

Extract Proposed Site Plan (Axis Mason)

The type of pile envisaged for the works is a bored temporarily or permanently cased cast insitu pile end-bearing on rock with little if any contribution afforded by the superficial soils.

Working loads for piles founded on the bedrock are primarily governed by the end bearing capacity considerations. 450mm dia piles could be designed and installed for design actions Ed up to 900kN and 600mm dia for Ed up to 1600kN. Larger diameter piles could be designed to carry higher loads.

Optional small diameter (+/- 200mm) load bearing piles with a minimum rock strength of 5MPa give ultimate end bearing stress 15MPa and ultimate shaft

friction 450kPa. For preliminary design, the piles could carry compression and tension of =/-400kN nominal loads.

Predicted pile settlements for 600mm dia piles are in the region of 10mm at SWL and 20mm at 150% SWL .

6 EARTHWORKS

This section of the report considers excavations, filling, and compaction at the site.

All excavations, filling and compaction must be carried out in accordance with the current Health & Safety at Work regulations. All excavations into which personnel may enter must be supported or the sides battered back to a safe angle.

The extraction of the soils themselves should not pose any unusable mechanical problem but removing the reinforced sub-structure will require hydraulic breakers and specialist plant to undertake the work and control the environmental impact.

Careful consideration will have to be given to the effect of the excavation on the neighbouring properties, roads, and services. Careful use of hydraulic breakers or concrete sawing may be needed to excavate buried concrete.

Extract from Proposed Section A-A (Axis Mason)

There is a small basement. All excavations must be carried out in accordance with current Health and Safety at Work Legislation.

7 GROUND AGGRESSIVITY

This section considers the procedure or systems to control or circumvent the problem of corrosion of foundation elements and buried utilities.

The principal cause of concrete degradation in foundations is considered attack by sulphates present in the soil and ground water.

The results of geochemical tests carried out on samples taken during the ground investigation indicate that the site can be classified as class DS-1 and ACEC Class AC-1 in accordance with BRE Special Digest 1:2005.

8 BASEMENT CONSIDERATIONS

This section of the report considers factors relating to the basement wall design and hydrostatic pressures to be considered together with any special conditions affecting its design and construction, retention of the perimeter of the excavation, and method of excavation.

8.1 Basement retaining wall

The proposed basement covers only a small part of the plan area of the site. Consequently, there will be sufficient room to form the basement in an open excavation with battered sides in some areas.

Extract from Proposed Section A-A (Axis Mason)

Guidance on the design of retaining walls and groundwater control can be found in the following documents, (this list is far from exhaustive):

- BS 8002:2015, Code of practice for earth retaining structures
- BS EN 1992-1-1:2004+A1:2014 Eurocode 2: Design of concrete structures. General rules and rules for buildings

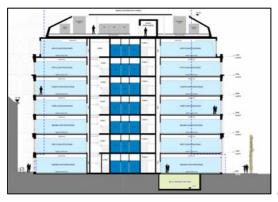
The boreholes have reported similar ground geological conditions across the site. The following parameters should be used for the retaining wall design:

	Parameters		
Strata	۷ (kN/m³)	c' (kPa) / φ' (°)	
MADE GROUND	19	0 / 30	
ALLUVIUM – clayey or silty	20	10 / 35	
ALLUVIUM – sandy or gravelly	20	0/41	
BEDROCK	21	40 / 40	

Where:

γ= Unit weight of soil

 $\boldsymbol{\theta}$ = Angle of internal friction


The strength values are necessarily conservative given the variable nature of the soils as evidenced by the range of SPT N values.

The general excavation level appears to be below the ground water levels shown by the monitoring records. The ground conditions at excavation level mainly comprise made ground or alluvium.

8.2 Basement Slab

The basement slab should be designed to resist uplift pressures from any rise in groundwater or these pressures must be dissipated before they become effective. Hollow floors or a granular layer beneath the basement slab can be used to collect groundwater but then permanent pumping from sumps will be required to prevent the build-up of water pressure.

The final design of the basement slab will consider the groundwater pressure. There is much merit in considering the problem of groundwater in conjunction with the basement excavation support system and optimising the retention and cut-off characteristics.

Extract from Proposed Section A-A (Axis Mason)

In any event, the basement slab should be capable of resisting the larger of the heave pressure or the bearing pressure. If the foundation piles are utilised as anchor piles, heave will be much reduced, but the basement slab will have to be designed to resist the bearing, groundwater, and heave pressures. Alternatively, temporary anchors can be installed to cope with uplift forces during construction.

Calculations can give an approximate indication of the long-term basement heave below the new basement excavation.

Timescales for consolidation are notoriously difficult to predict. The alluvial deposits, where relatively sandy in nature, will tend to reduce consolidation periods quite significantly. It therefore seems quite likely that a reasonable proportion of the calculated heave movement may occur during and immediately following excavation and before the basement slab is installed.

Calculation rarely takes account of the piling beneath the basement or of imposed loading from the new structure, whose effects will also reduce overall movements.

8.3 Basement excavation

Considering the geometry of the excavation cutting, the flatter the slope, the less support is required but the more excavation is needed.

Excavations will be in made ground and alluvium. Excavations in alluvium should be possible using conventional earthmoving equipment. It is anticipated that most old foundations or walls will also be able to be removed with this equipment. However,

it is possible that locally hydraulic/pneumatic breakers will be required for excavations in reinforced concrete.

Careful consideration must be given to the effect of the basement excavation on neighbouring properties, roads, and services.

Extract from Proposed Section A-A (Axis Mason)

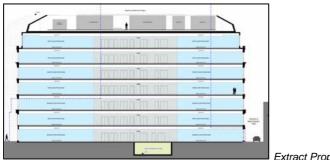
The principal considerations are:

- The minimisation of ground movements and damage to adjacent buildings and any mains services including gas, water, electricity, and sewerage.
- The minimisation of noise pollution and vibrations to sensitive structures and services.
- The maintenance of existing water levels outside the site.
- The effect of water pressures on basement stability in the short and long term,
- Controlling run-off and potential off-site pollution.

Generally, all excavations must be carried out in accordance with the Current Health & Safety at Work Regulations and CIRIA Report '97.

Temporary works should be designed to minimise ground movements and damage to adjacent buildings and services during excavation.

The study has not revealed any significant past potentially contaminated land use at the site.


In addition, the results of the chemical testing have confirmed the soils tested are generally classed as inert waste. The concentrations fall below the trigger levels; see Appendix 4, apart from one loss on ignition in BH2 which may be related to timber found in the made ground.

Notwithstanding the above and in accordance with general good practice, a watching brief should be maintained during all excavations.

9 GROUND WATER CONSIDERATIONS

This section of the report discusses systems to control ground water both during construction and for the completed project.

The level of ground water is likely to not vary much across entire site due to change in geology and topography but may vary through seasonal variation from changes in precipitation.

Extract Proposed Section B-B (Axis Mason)

The most recent water level reading that have been taken at the site since the fieldwork was carried out is 1.31m bgl in BH3. These levels may vary according to season.

9.1 Control of groundwater

Consequently, excavations for the small basements are likely to encounter water.

Any de-watering of the basement would have to be carried out cautiously to avoid the risk of settlement arising from groundwater lowering.

The amount of groundwater likely to flow into the basement excavation will be a function of the ground permeability, the head of water and the cross-sectional area of the part of the excavation being considered.

This flow could be reduced by the cut-off effect of any retaining wall e.g., sheet piles, but not eliminated.

APPENDIX 1

ASPECTS TO BE CONSIDERED DURING THE INVESTIGATION OF POTENTIALLY CONTAMINATED SITES

- Contamination
- Geology
- Hydrology
- Pathways and targets

Examples of Phases and activities associated with site investigation

Phase of investigation	Typical activities
Preliminary Investigation	Literature review (Desk Study)
	Consultation (e.g., site owners, neighbours, regulatory authorities)
Exploratory	Site visits Preliminary sampling (e.g., surface deposits,
investigation	vegetation)
	Preliminary monitoring (e.g., gas composition and groundwater quality, flora, and fauna)
Detailed investigation	Comprehensive investigation of ground (e.g., using trial pits, trenches, boreholes)
	Monitoring (e.g., gas composition and water quality, flora, and fauna)
Supplementary investigation	Further ground investigation and monitoring
Investigation for	Treatability testing
Investigation for compliance and performance	Post-treatment validation and monitoring as appropriate

Examples of generic reference data for assessment purposes

Medium	Dedicated	Non-dedicated
Soils	Defra Soil Guideline Values (SGV) Dutch standards Canadian guidelines Australian/New Zealand guidelines	Application of sewage sludge to land
Water	Dutch, Canadian guidelines	Drinking water standards and water quality objectives
Air	-	Air quality standards Occupational Exposure Standards and Maximum Exposure Limits
Soil gas	WMP No. 27 on landfill gas BRE guidance ICRCL guidance on the development and after-use of landfill sites CIRIA guidance on methane Institute of Petroleum guidance	-

Typical objectives for investigation of contamination

- Contamination of soils and ground water on the site
- Contamination migrating off the site
- Other hazards and features on the site
- Potential targets and likely pathways
- Alternative remedial strategies
- Monitoring and maintenance
- Safe site working practices during remedial works
- Contingencies for any emergency action

NOTE:

Remember there may be conflict between the objective of a site investigation for foundation design and a site investigation for contamination assessment.

Health and Safety issues

Health and safety procedures
Controlled entry
Site zoning
Good hygiene
Monitoring
Appropriate disposal of wastes
Safe handling, storage, and transport of hazardous samples
Control of nuisance
Emergency procedures
Provision of appropriate training
Need for routine health surveillance

QA/QC for site investigation and risk assessment

- 1. Compliance with all relevant legal requirements
- 2. Review of documentary evidence during desk study
- 3. Location and recording of observations during site reconnaissance
- Procedures used to identify potential hazard-pathway-target relationships and to
 select "plausible" scenarios for further assessment
- 6. Siting and installation of exploratory excavations
- 7. Establishment and performance of environmental protection measures
- 8. Waste disposal arrangements (Duty of Care etc.)
- 9. Implementation of health and safety procedures

Amplus Ltd Foundation and Geotechnical Specialists

- 10. Collection and handling of samples
- 11. Storage and preparation of samples
- 12. Methods of analysis and testing
- 13. On-site recording protocols
- 14. Reporting of data
- 15. Reporting procedures used in estimation of risks
- 16. Input to, and use of any models to aid interpretation of the data
- 17. Participation by contracting parties in appropriate accreditation schemes (e.g., BS 5750 for quality management, NAMAS for analytical and testing service, CONTEST * for analytical proficiency
- 18. Scheme operated by the laboratory of the Government Chemist under the DTI's
- 19. 'Validity of Analytical Measurement' Initiative.

Objectives of risk assessment

The purpose of risk assessment is to determine:

Whether the observed levels of contamination are likely to pose unacceptable risks to defined targets now or in the future.

Whether measures should be taken to reduce risks to an acceptable level.

Hazard identification and assessment

Comparison of observed concentrations with published data

Assessment of hazard-pathway-target scenarios

Comparison of observed concentrations with reference data indicative of neglig ble risk under defined conditions of exposure

APPENDIX 2

Borehole logs and ground water levels

BH1-3

Nominal Section

BH1-2-3

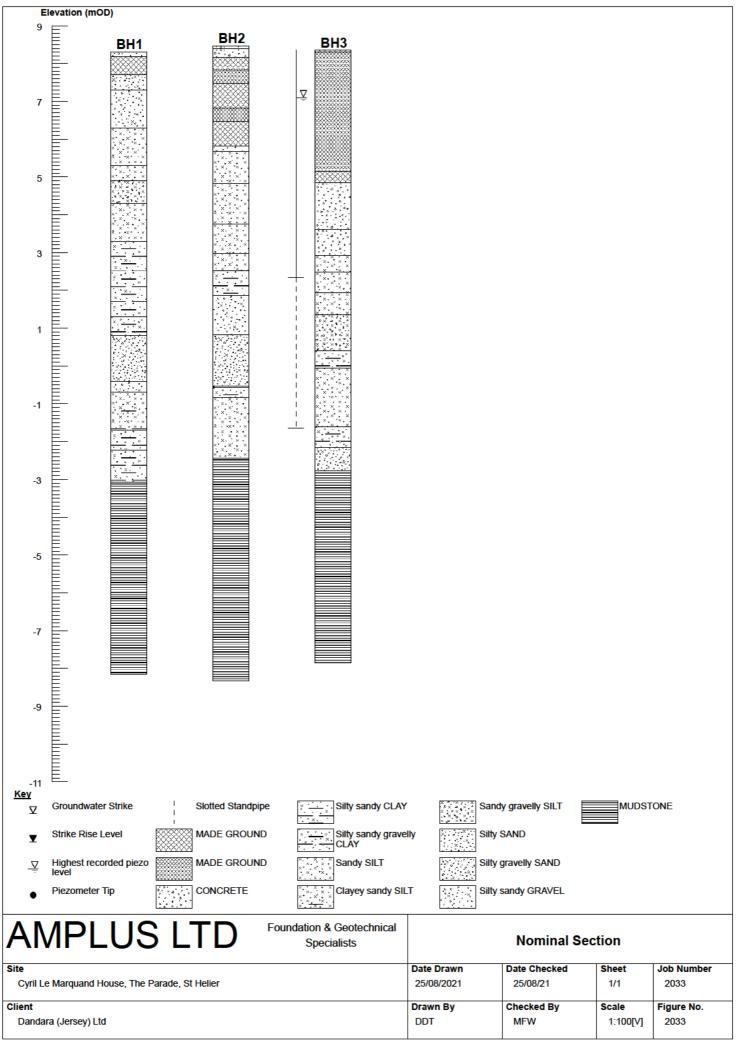
SPT Summary Table

SPT vs. Depth Profile

Boring Meth	od	Casing	Diameter	r	Ground	Level (mOD)	Client	Job	11
hand to 1 20	t excavated by m	113	3mm case	ed to 11 50m		8.30	Dandara (Jersey) Ltd	Numl 203	
Fraste PL Ri	g - Windowless 3.10m Dry Drilling	Locatio	n		Dates		Engineer	Shee	t
to 11.37m, R 16.45m	otary Coring to	as per sight plan		13/07/2021- 14/07/2021		Dandara (Jersey) Ltd	1/	1/2	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legen	Wator V
			. ,		8.18	0.12	CONCRETE - Slab	5°° • 0° •	
					0.10	(0.48)	MADE GROUND - cobbles and sand		
				Inspection Pit	7.70	0.60	Loose brown silty fine to coarse SAND		X
						(0.40)	LOOSE DIOWN SILV INTE TO COALSE SAND	×××	
1.00-1.45	SPT N=8		DRY	1,1/3,1,1,3	7.30	1.00	Loose brown slightly silty sandy GRAVEL	× •×	
1.00 1.00-2.00	D1 ES2 0.15							×	
1.00-2.00	L3 0.85					(1.00)		× •×	Ċ
								×	
2.00 2.00-2.45	D4 SPT N=7		1.53	Water Flush Set Up 3,2/2,2,1,2	6.30	2.00	Soft to firm brown slightly sandy SILT	× × × × × × × × ×	×
2.00-3.00	L5 0.61	2.00	1.55	5,2/2,2,1,2				× × × × × × × × × × × × × × × × × × ×	× ×
						(1.00)		× × × × × ×	×
					5.30	3.00		× × × × × ×	×
3.00-3.45 3.00	SPT N=10 D6	3.00	1.17	2,2/3,2,2,3	5.50	(0.40)	Firm brown slightly sandy SILT	× × × × × × ×	×
3.00-4.00 3.40-4.00	L7 0.84 B30				4.90	3.40	Soft to firm light brown sligh ly gravelly slightly sandy SILT	× × × ×	×
						(0.60)		× × × × × × × ×	×
					4.30	4.00		× × × × × × × × × ×	×
4.00-4.45 4.00	SPT N=8 D8	4.00	1.95	2,2/2,2,2,2			Soft to firm greyish brown slightly sandy SILT	× × × × × ×	×
4.00-5.00	L9 0.63					(1.00)		× • × × × × × × ×	× ×
								× × × × × × × × × ×	× ×
5.00-5.45	SPT N=7	5.00	2.21	1,1/1,2,2,2	3.30	5.00	Soft to firm greyish brown slightly sandy silty CLAY	× × ×	×
5.00-5.45 5.00 5.00-6.00	D10 L11 0.55	6.00	2.21	1, 1/1,2,2,2			Solit to him greyish brown slightly sandy slity CLAT	<u> </u>	
5.00-0.00	211 0.00	0.00				-		×	
						=		× ×	-
6.00-7.00	L12 1.0					(2.00)		××	<u>.</u>
								×	
								× ×	-
						<u>-</u>		××	:-
7.00-7.45	SPT N=38	7.00	3.97	7,7/7,9,11,11	1.30	7.00	Very stiff brown slightly sandy gravelly silty CLAY	×	÷
7.00 7.00-8.00	D13 BNR					(0.50)		× —	
7.50-8.05	B31				0.80	7.50	Dense light brown gravelly very silty SAND	× • • •	-
								* *	
8.00-8.05	L14 1.00	8.00		13/07/2021.4 40		(1.21)		× ~ *	
8.05-8.10 8.10-8.71	L15 0.05 B16 0.61			13/07/2021:4.40m 14/07/2021:1.46m				×.	
				14/07/2021.1.4011				^ ×	
8.71-9.16 8.71	SPT N=28 D17		3.34	10,8/8,6,6,8	-0.41	8.71 (0.29)	Medium dense brown sandy silty GRAVEL	×, ·×	
8.71-9.53	B18 0.82	9.00			-0.70	9.00	Stiff dark brown clayey sandy SILT	× × × × × × × ×	×
								× • × • × • × • ×	× ×
9.53-10.53	B19 0.84	10.00				(1.00)		× × × × × × ×	×
								× • × • × × × ×	×
Remarks		1			I		Scal (appro	e Logg (x) By	ed
							1 50	MEV	N
							1 30	1011 0	•

Boring Methe	od		Casing	Diamete	r	Ground	Leve	l (mOD)	Client	Job	
Inspection pit hand to 1 20n	excavated	l by	11	3mm cas	ed to 11 50m		8.30		Dandara (Jersey) Ltd		nber 033
Fraste PL Rig sampling to 8	I - Window .10m Dry E	less Drilling	Locatio	n		Dates			Engineer	She	et
to 11.37m, Ro 16.45m	otary Coring	g to	as	per sight	plan	13 14	/07/2 /07/2	2021- 2021	Dandara (Jersey) Ltd	:	2/2
Depth (m)	Sample	/ Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	C (Thi	Depth (m) ckness)	Description	Lege	nd Motor
10.00-10.50	B32					-1.70		10.00 (0.53)	Stiff brown mottled grey slightly sandy silty CLAY	×	×
10.53-10.98 10.53 10.53-11.37	SPT N=3 D20 B21 0.84		11.00	3.52	3,5/7,8,8,11	-2.23		10.53 (0.84)	Very stiff greyish brown slightly sandy silty CLAY	× × ×	×
	TCR	SCR	RQD	FI		-3.07		11 37		×	·
11.37	100	30	10		C22 Casing to 11.50	-3.07		11.37	Weak sligh ly weathered MUDSTONE (Jersey Shale Formation) closely bedded, planar smooth surfaces		
11.69	100	20	0	_	C23						
2.00				_	C24		-				
	100	50	30	10							
2.71	100	40	15	10	C25			(3.03)			
3.25	100	30	10	10	C26						
3.63	100	50		10	C27		E				
					021						
	100	80	50	8	C33 14.00-14.10		-				
					C34 14.40-14.60	-6.10	Ē	14.40	Weak to medium strong slightly weathered MUDSTONE		
							E		(Jersey Shale Formation) closely bedded, planar smooth surfaces		
4.78					C28		Ē				
	100	60	40	7							
								(2.05)			
15.58					C29		Ē				
	100	80	70	5	C35 16.00-16.10		-				
	100	00		0	C36 16.20-16.40		Ē				
16.45					14/07/2021:1.67m	-8.15	Ē	16.45	Complete at 16.45m		
							Ē				
							<u> </u>				
							E				
							E				
							Ē				
							Ē				
							E				
Remarks									Scal (appro	e Log x) By	ged
									1 50	M	=W
										re No.	

Boring Meth	od	Casing	Diamete	r	Ground Level (mOD)			Client	Job		
nspection pit	t excavated by	-		ed to 11 50m		8.47	. ,	Dandara (Jersey) Ltd	203		
ampling to 8	g - Windowless 3.04m Dry Drilling otary Coring to	Location		plop		07/20		Engineer Dandara (Jersey) Ltd	Sheet		
Depth (m)	Sample / Tests	Casing Depth	per sight Water Depth	Field Records	Level (mOD)	De	enth	Description	Legend		
(11)		(m)	(m)		(1102)	(Thic	(m) kness)		Legen	_	
					8.39 8.17		0.08 (0.22) 0.30	CONCRETE - 1st layer		•	
					0.17	Ē	(0.35)	CONCRETE - 2nd reinforced layer		8	
65-1.10	SPT N=21		DRY	Inspection Pit 6,7/3,3,9,6	7.82	Ē	0.65	MADE GROUND - Brown silty sandy fine to medium gravel MADE GROUND - Brown slightly silty sandy GRAVEL with	-	8	
65 65	D1 ES2				7.47	Ē	(0.35) 1.00	some timber		×	
65-1.65	B3 0.60							MADE GROUND - Medium dense brown sandy fine to medium gravel		X	
						E	(0.65)			8	
.65-2.10	SPT N=10	1.50	DRY	2,3/3,2,2,3	6.82	Ē	1.65	MADE GROUND - Brown slightly clayey slightly gravelly		×	
.65 .65-2.65	D4 B5 0.67				6.47	Ē	(0.35) 2.00	sand		8	
.00-2.65	B34							MADE GROUND - Brown silty very gravelly sand		Ŷ	
							(0.65)			∞	
.65	D6			Set up water flush	5.82	Ē	(2,65)	Soft brown sandy silty CLAY	<u> </u>	× ×	
65-3.10 65-3.65	SPT N=7 L7 0.61		1.88	2,1/2,2,1,2	5.67		`2.80	Soft brown sandy SILT	× × × ×	× ×	
							(0.85)	-	× × × ×	×	
						Ē	(0.00)		× × × × × × ×	×. ×	
65	D8			08/07/2021:1.48m	4.82	E	3.65	Soft to firm brown slightly sandy SILT	×	×	
65-4.65	L9 0.63			09/07/2021:1.48m		Ē			× , × , × , ×	××	
65-4.10	SPT N=8	3.50	1.48	1,2/3,2,1,2		E	(1.07)		×	×	
							(-)		× × × × × ×	×	
65-5.65	L11 0.60				3.75	E	4.72		× × × × × × × × × × × × × × × × × × ×	××	
72-5.17 72	SPT N=8 D10	4.50	2.12	1,2/2,2,2,2	3.75	Ē	4.72	Firm brown slightly sandy SILT	* * * *	×	
12	Dio					-	(0.78)		× • × • × • × • × • × • × • × • × • × •	×	
						Ē			× × × × × × × ×	×	
50-5.95 65-6.65	B35 L13 0.57	6.50			2.97	E	5.50	Firm orangish brown and grey slightly sandy SILT	× × × ×	×, ×	
00-0.00	E10 0.07	0.50			2.52		(0.45) 5.95		× × × × ×	×	
95-6.40 95	SPT N=11 D12	5.50	2.49	3,3/2,3,3,3	2.52	Ē	5.95	Firm greyish brown slightly sandy silty CLAY	××	•	
	012					Ē	(0.65)		×	•	
65-7.65	L14 1.00				1.87	-	6.60	Dense grey brown very silty sandy fine to coarse angular	×	-	
55-7.05	L14 1.00					Ē		GRAVEL	×××		
						Ē	(1.05)		×		
						Ē			×××		
65-8.10	SPT N=44	7.50	2.73	4,8/10,10,11,13	0.82		7.65		×	•	
65-8.04	D15 L16 0.39	1.50	2.13	+,0/10,10,11,13	0.02	Ē		Dense orangish brown slightly silty gravelly SAND	× • • ×		
03-0.04 04-9.04	B17 1.00					Ē			×		
						Ē	(1.35)		× ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	5	
									×	-	
									× 。 ***		
00-9.50	B36 SPT N=45	0 50	0.04	2 5/0 40 44 40	-0.53 -0.57	-	9.00 (0.26)	Very stiff greyish brown slightly gravelly slightly sandy silty	×	-	
04-9.49	D18	8.50	2.94	3,5/8,10,14,13	-0.83		(0.26) 9.30	CLÂY		×	
04-9.62	B19 0.58	0.50						Very stiff brown slightly gravelly slightly sandy silty CLAY Very stiff grey brown sandy SILT	× × × × ×	××	
.62-10.25	B20 0.63	9.50				Ē			× × × × × × × × × × × × × × × × × × ×	× × _ >	
Remarks						È		Scale		é	
								(approx)			
								1 50	MFV	V	
								Figure	No.		


AM	PL	.US	SL	_T[Foundation S	on & Geo Specialist		Site Cyril Le Marquand House, The Parade, St Helier	Bore Num BH	ber
Boring Meth Inspection pit		d bv	-	Diamete 3mm cas	r ed to 11 50m		Level (mOD 8.47	Client Dandara (Jersey) Ltd	Job Num	
hand Fraste PL Rid	a - Window	/less							203	
sampling to 8 to 11.73m, Ro 16.80m	3.04m Dry otary Corir	Drilling ng to	Locatio as	n per sight	plan		8/07/2021- 2/07/2021	Engineer Dandara (Jersey) Ltd	Shee 2/	
Depth (m)	Sample	/ Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	Description	Legen	id id
10.25-10.90	B21 0.5	8					(1.60)			× × × × ×
10.90-11.73	B22 0.8	3	11.50	1.15	09/07/2021:2 03m	-2.43	10.90	(Jersey Shale Formation) closely bedded, planar smootl	n ******	×
10.90-11.35	SPT(C)	N=38	10.50	2.03	12/07/2021:1.15m 6,10/8,7,10,13 25,0/50			surfaces		
11.73-11.85	TCR	SCR	RQD	FI	SPT(C) 25*/45					
11.73	100	0	0	-	50/70 C23					
11.99	100	10	10	10	C24					
12.70	100	30	20	10	C37 12.70-12.80 C25					
13.33 13.49	0 100	0	0	_	C26					
13.75				_	C27		(5.90)			
14.46	100	0	0	-	C28		- (110) -			
14.16	100	10			C28		E			
14.62			-	-	C38 14.62-14.70 C29					
45.45	100	20	20	10						
15.17 15.40	100	10	0	_	C30 C31					
.0.70	100	10	0	_						
15.92	100	10	0	_	C32					
16.31	100	5	0		C33 12/07/2021:1.43m					
16.80	100	5		-		-8.33	- - - 16.80			
							<u>-</u>	Complete at 16.80m		
Remarks							<u> </u>	Sc (app	ale Logg prox) By	jed
								1	50 MF\	N
								Fig	jure No.	
									2033.BH2	

Boring Meth	od	Casing	Diameter	r	Ground	Level (mOD) Client		Job	
nspection pit	t excavated by	-		ed to 10.60m		8.35	Dandara (Jersey) Ltd			mber 033
sampling to 7 to 11.13m, R	g - Windowless 7.42m Dry Drilling otary Coring m & 11.13m to	Location as	n persight	plan		/07/2021- /07/2021	Engineer Dandara (Jersey) Ltd		She	eet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	Description	Legend	Water	Instr
					8.31	0.04	MADE GROUND - Tarmac			
				Inspection Pit			MADE GROUND - Loose dark brown sandy coarse angular gravel and cobbles	fine to		
.20-1.65 I.20 I.20-2.20	SPT N=6 ES2 L1 0.60		DRY	1,1/2,2,1,1		(3.16	,			
2.20-2.65 2.20-3.20	SPT N=7 L3 0.72	1.60	DRY	1,1/2,2,1,2					50X50X50X50X50X50	
3.20-3.40 3.20 3.20-3.44	SPT 25/45 D4 B5 0.24	2.60	1.79	2,11/25 Water Flush Set Up	5.15 4.85	3.20 (0.30 3.50	CONCRETE - Upper layer with reinforcing b	ars,	2020202000	
.44-3.53 53-3.62 .62-4.56 .65-3.70	B6 0.09 C7 0.05 C8 0.90 C30	3.10 4.10				(1.24	medium strong to strong			
1.56-4.74	C9 0.18				0.01		Reinforcing bars up to 32mm ø at 4.74m			
1.74-4.89 1.89-5.42	C10 0.15 C11 0 53			05/07/2021:1.78m	3.61	4.74 (0.68	CONCRETE - Lower layer			
5.42-5.87 5.42 5.42-6.42	SPT N=11 D12 L13 1.00	5.10	2.00	2,3/3,3,3,2	2.93	5.42	Firm greyish brown slightly sandy SILT	ос х х х х х х х х х х х х и х х х х		
					2.48	5.87	Solution in grey brown sandy Silli	х х х х х х х х х х х х х х	[
5.42-6.87 5.42 5.42-7.42	SPT N=7 D14 L15 0.69	6.10 7.10	2.24	1,0/1,2,2,2	1.93	6.42 (0.58	Solution in brown slightly salidy SiLT			
2.00-7.42	B31				1.35	7.00	Firm grey slightly gravelly sligh ly sandy SIL	T × × × × × × × × × × × × × × × × × × ×	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sono Wood of Sono Sono Sono Sono Sono Sono Sono Sono Sono
7.42-7.95	L16 0.53					(0.95		8 6 X 1 X 1 X X X X X X X X X X X X X X X	6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
7.95-8.40 7.95 7.95-8.95	SPT N=33 D17 B18 1.00	7.60 8.60	4.24	5,7/8,8,9,8	0.40 -0.05	(0.45	gravelly silty CLAY	/ × · · · · · · · · · · · · · · · · · ·		2005,000,000,000,000,000 0.000,000,000,000,0
.95-9.95	B19 1.00					8.40	Stiff to very stiff brown sandy SILT		2000 2000 0000000000000000000000000000	
						(1.55				
0.95-10.40	SPT N=18	9.60	1.50	7,5/3,4,5,6	-1.60	9.95	;	х х х х х х х х х	2 0 2 0 2 0	0000000 0000000 00000000
Remarks Slotted Pipe	Installation, Respon	se Zone 1	D.00m - 6	5.00m				Scale (approx)	Log By	ggeo
								1 50	м	FW
								Figure N	lo.	_

Primiting 1: Windby Weight Statum Location as per sight plan Dates 07/07/02/1- 07/07/02/1- 00/07/02/07/02/1- 00/07/02/1- 00/07/02/1- 00/07/02/1- 00/07/02/1- 00/07/00	Boring Meth	excavated by	Casing	Diamete			Level (mOD) 8.35	Client Dandara (Jersey) Ltd		BH3 Job Number 2033
Openity assesses Sample / Tests Observation (m) Test descords (mode) (m) Openity (m) Description Legend 8 I 385-10-55 B32 B21 1:00 10.60 200,00' 50,00'/ (0.50)	Fraste PL Ric sampling to 7 to 11.13m, Ro 3.53m - 5.42r	g - Windowless .42m Dry Drilling ptary Coring			plan	05				2033 Sheet 2/2
B38-108 B31 100 10.60 250,500 (0.55) CLAY Very dense grey gravely very sity SAND 0.95-113 D22 0.18 SCR ROP FI (0.55) (0.57) (0.57) 1.13 TCR SCR ROP FI (0.57) (0.57) (0.57) 2.70 100 S0 10 C24 (5.07) C26 (5.07) 10.27 100 60 10 C26 (5.07) 7.85 15.20 15.50 100 90 5 C33 15.70-15.90 7.7.85 15.20 15.20 66.20 100 90 5 C33 15.70-15.90 7.7.85 16.20 Complete at 16.20m <th>Depth (m)</th> <th>Sample / Tests</th> <th>Casing Depth (m)</th> <th>Water Depth (m)</th> <th>Field Records</th> <th>Level (mOD)</th> <th>Depth (m) (Thickness)</th> <th>Description</th> <th>Water Vater</th> <th>Instr</th>	Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Water Vater	Instr
	.95-10.95 0.50-11.00 0.95-11.13 1.13-11.26 1.13 2.70 2.87 3.45 4.21 4.74 5.50	B21 1.00 B32 B22 0.18 TCR SCR 100 100 100 100 100 100 100	RQD 75 50 60 40 60 30	10 10 10 10 10 10	0/55 SPT(C) 300*/70 06/07/2021:GL 07/07/2021:0 92m C23 C33 11.70-12.10 C24 C25 C26 C34 13.65-13.75 C27 C28 C29 C35 15.70-15.90	-2.78		CLAY Very dense grey gravelly very silty SAND Medium strong to strong slightly weathered MUDSTONE (Jersey Shale Formation) closely bedded, planar smooth surfaces		
	Remarks lotted Pipe I	Installation, Respon	se Zone 1	0.00m - 6	5.00m			Scale (appro	k)	Logged By

AN	1 P I	_U	SL		lation & Ge Specialis		cal	Site Cyril Le M	arquand	House, T	he Parad	e, St Heli	er		Borehole Number BH3	
Installatio Single Ins			Dimensio Interna	ons al Diameter of Tube [A] = 50	mm		•	Client Dandara (Jersey) L	td					Job Number 2033	
		-	Location	1	Ground	Level (m	OD)	Engineer							Sheet	
			as per	sight plan	8	3.35		Dandara (Jersey) Ltd							1/1	
egend S	Instr (A)	Level (mOD)	Depth (m)	Description				Groundwater Strikes During Drilling							1	
				Cement/Bentonite Seal	Date	Time	Depth	Casing Depth (m)	Inflo	w Rate	Readings				Depth	
		7.35	1.00				Struck (m)	(ਜ਼)			5 min	10 min	15 min	20 min	Seale (m)	
				General Backfill												
								Gr	oundwat	er Obsei	rvations	During D	rilling			
								Start of S	hift			F	End of Si	nift		
					Date	Time	Depth	Casing	Water	Water	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Wate	
		3.35	5.00	Banda site Gala	05/07/21 06/07/21		Hóle (m)		Depth (m)	Level (mOD)	17.00	4.89	(m) 4.10 10.60	1.78 GL	Leve (mOL 6.5	
1 0+ × x × x				Bentonite Seal	07/07/21	08.00 08.00	4.89 10.95	4.10 10.60	1.75 0.92	6.60 7.43	17.00 17.00	10.95 16.20	10.60	1.08	7.2	
* *X * * * * * *		2.35	6.00													
к. х х х х х х х																
× × × × × × × × × × × × × × ×																
и х х и х х и х х и х х х х				Slotted Standpipe				Instru	ument Gi	roundwa	ter Obse	rvations				
					Inst.	[A] Type	: Slotte	d Standpip	e							
						Inst	trument	[A]								
х х и х х х х х х х х х х х х х х х		-1.65	10.00		Date	Time	Depth (m)	Level (mOD)				Rema	arks			
×.				Bentonite Seal	09/07/21	08:00	1.29									
až.		-2.65	11.00		09/07/21 12/07/21 12/07/21	17:00 08:00 17:00	1.29 1.25 1.23	5 7.10								
					13/07/21 13/07/21 14/07/21	08:00 17:00 08:00	1.31 1.32 1.33	7.04								
					14/07/21 15/07/21	17:00 08:00	1.27	7.08 7.03								
					15/07/21	17:00	1.31	7.04								
				Pottom Fill												
				Bottom Fill												
	r / A	-7.85	16.20													

Slotted Pipe with Geosock

Produced by the GEOtechnical DAtabase SYstem (GEODASY) © all rights reserved

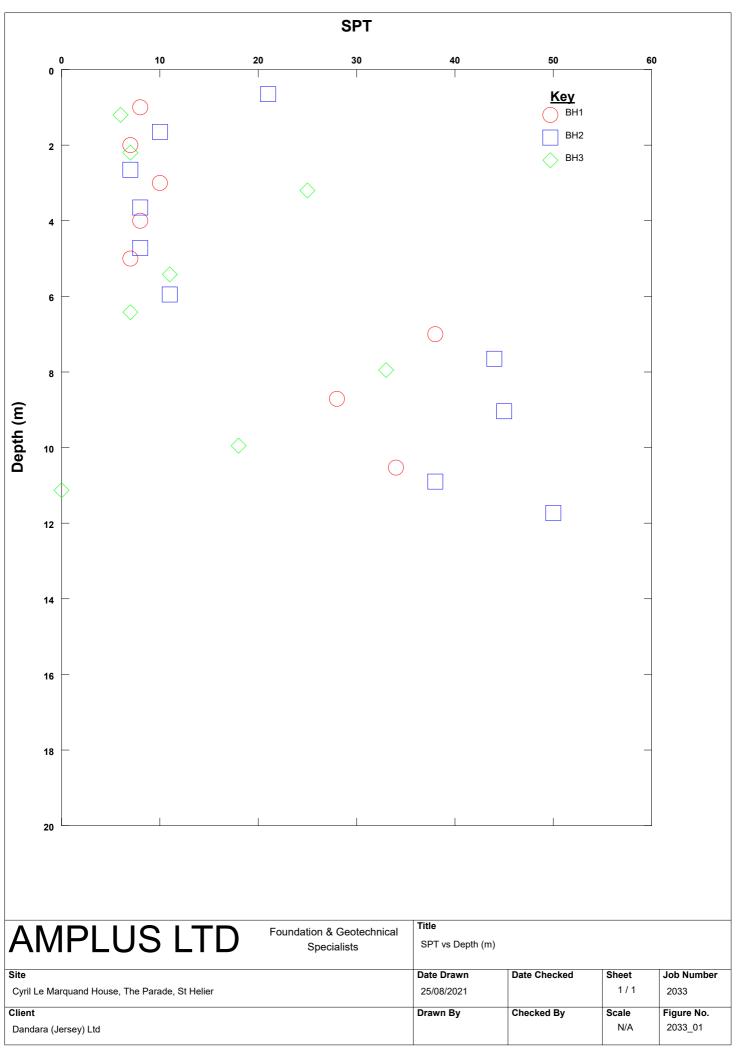
AMPLUS LTD

Foundation & Geotechnical Specialists

Standard Penetration Test Results

Site : Cyril Le Marquand House, The Parade, St Helier

Client : Dandara (Jersey) Ltd


Engineer : Dandara (Jersey) Ltd

Borehole Number	Base of	End of	End of _Test	Test Type	Seating	Blows 5mm	Blows f	or each 7	5mm pene	etration	_	_
Number	Base of Borehole (m)	End of Seating Drive (m)	Test Drive (m)	Туре	1	2	1	2	3	4	Result	Comments
BH1	1.00	1.15	1.45	SPT	1	1	3	1	1	3	N=8	0.21 Recovered
BH1	2.00	2.15	2.45	SPT	3	2	2	2	1	2	N=7	0.40 Recovered
BH1	3.00	3.15	3.45	SPT	2	2	3	2	2	3	N=10	0.36 Recovered
BH1	4.00	4.15	4.45	SPT	2	2	2	2	2	2	N=8	0.40 Recovered
BH1	5.00	5.15	5.45	SPT	1	1	1	2	2	2	N=7	0.38 Recovered
BH1	7.00	7.15	7.45	SPT	7	7	7	9	11	11	N=38	0.38 Recovered
BH1	8.71	8.86	9.16	SPT	10	8	8	6	6	8	N=28	0.29 Recovered
BH1	10.53	10.68	10.98	SPT	3	5	7	8	8	11	N=34	0.35 Recovered
3H2	0.65	0.80	1.10	SPT	6	7	3	3	9	6	N=21	0.36 Recovered
3H2	1.65	1.80	2.10	SPT	2	3	3	2	2	3	N=10	0.13 Recovered
3H2	2.65	2.80	3.10	SPT	2	1	2	2	1	2	N=7	0.45 Recovered
BH2	3.65	3.80	4.10	SPT	1	2	3	2	1	2	N=8	0.40 Recovered
3H2	4.72	4.87	5.17	SPT	1	2	2	2	2	2	N=8	0.45 Recovered
BH2	5.95	6.10	6.40	SPT	3	3	2	3	3	3	N=11	0.44 Recovered
BH2	7.65	7.80	8.10	SPT	4	8	10	10	11	13	N=44	0.45 Recovered
BH2	9.04	9.19	9.49	SPT	3	5	8	10	14	13	N=45	0.40 Recovered
3H2	10.90	11.05	11.35	CPT	6	10	8	7	10	13	N=38	No recovery
BH2	11.73	11.78	11.85	CPT	25	0	50				25*/45mm 50/70mm	Test terminated in hard ground
знз	1.20	1.35	1.65	SPT	1	1	2	2	1	1	N=6	No Recovery
3H3	2.20	2.35	2.65	SPT	1	1	2	2	1	2	N=7	No Recovery
3H3	3.20	3.35	3.40	SPT	2	11	25				25/45mm	0.19 Recovered, test terminated in har ground
BH3	5.42	5.57	5.87	SPT	2	3	3	3	3	2	N=11	0.27 Recovered
BH3	6.42	6.57	6.87	SPT	1	0	1	2	2	2	N=7	0.32 Recovered
3H3	7.95	8.10	8.40	SPT	5	7	8	8	9	8	N=33	0.29 Recovered
3H3	9.95	10.10	10.40	SPT	7	5	3	4	5	6	N=18	0.40 Recovered
BH3	11.13	11.20	11.26	CPT	250	50					300*/70mm 0/55mm	Test teminated in hard ground
												SYstem (GEODASY) © all rights reserved

Sheet

2033

1/1

Produced by the GEOtechnical DAtabase SYstem (GEODASY) (C) all rights reserved

APPENDIX 3

Laboratory Test Results

GEL:

Report No. 36638

- BS EN ISO 17892-1: 2014:5. Water Content 28
- BS1377: Part 2: 1990:4.2-4.4&5.2-5.4, Liquid & Plastic Limits 7
- BS EN ISO 17892-4: 2016: 5.2, Particle Size Distribution Wet Sieve 8
 - BS ENO 17892-4: 2016: 5.4, Particle Size Distribution Pipette 7
- ISRM: Suggested Methods: 1981: Uniaxial Compressive Strength of Rock 2
 - ISRM: 2007: Point Load Strength Test 9
 - BRE SD1 Suite (Subcontracted) 6

ALS:

Report No. 210715-104

Landfill Acceptance

Report No. 210715-107

Landfill Acceptance

Report No. 210712-131

Landfill Acceptance

Amplus Ltd Unit 1, Thistle Grove St Lawrence Jersey JE3 1NN

			ve	ersion no.	T
For the attention of	Matthew Warner			Page No.	1 of 18
			Dat	e of Issue	20/08/2021
	TES	ST REPORT			
PROJECT/SITE	Cyril Le Marquand House, The Para	de, Jersey	Sample	es received	26/07/2021
GEL REPORT NUMBER	36638		Schedu	le received	26/07/2021
Your ref/PO:	2033		Testing co	ommenced	05/08/2021
Test report refers to	Schedule 1			Status	Final
	SUMMARY OF	RESULTS ATTACH	IED		
TEST METHOD & DESCR	RIPTION			QUANTITY	ACCREDITED
					TEST
BS EN ISO 17892-1: 201	l4:5. Water Content			28	YES
	.2-4.4&5.2-5.4, Liquid & Plastic Limit			7	YES
	16: 5.2, Particle Size Distribution - W			8	YES
	16: 5.4, Particle Size Distribution - Pip			7	YES
	ods: 1981: Uniaxial Compressive Stre	ength of Rock		2	YES
ISRM: 2007: Point Load	•			9	YES
BRE SD1 Suite (Subcont	tracted)			6	YES/NO
Remarks		Approved Signatories:			
	irtially reproduced without written	W Jones (Lab Manager) T Best	t (Deputy Laborat	ory Manager)	
permission from this labo		J Hanson (Director) N Parry (D		- /	
The results reported relat	e to samples received in the laboratory	MM			
Doc TR01 Rev No. 23	Revision date 10/02/21 DC:JH	I			

Geotechnical Engineering Ltd

Centurion House Olympus Park, Quedgeley Gloucester GL2 4NF

www.geoeng.co.uk

geotech@geoeng.co.uk TEL: 01452 527743 Fax: 01452 729314

Registered number: 00700739 VAT Number: 682 5857 89

Payments: Geotechnical Engineering Limited Sort code: 16-22-11 Bank account: 11125135

Version No. 1

Geotechnical Engineering Limited

LIQUID AND PLASTIC LIMITS

BS.1377 : PART 2 : 1990 : 4 and 5

CLIENT AMPLUS LTD

SITE CYRIL LE MARQUAND HOUSE, THE PARADE, JERSEY

-		specimen denth	natural water	specimen	fraction	liquid	plas ic	plasticity				
no./type	•		content	and test	mm				description and remarks			
	()	()	(%)	method	(%)	(,,,,	(,,,,	(,,,,,				
1D	1.00	1.00	8.4	E#					Brown slightly silty sandy GRAVEL			
4D	2.00	2.00	22.9	E					Brown slightly sandy SILT			
6D	3.00	3.00	24.4	Е					Brown slightly sandy SILT			
30B	3.40	3.40	25.5	BYE	1	28	NP		Light brown slightly gravelly slightly sandy SILT			
8D	4.00	4.00	25.0	E					Greyish brown slightly sandy SILT			
10D	5.00	5.00	26.1	E					Greyish brown slightly sandy silty CLAY			
13D	7.00	7.00	10.4	E					Brown slightly sandy gravelly silty CLAY			
31B	7.50	7.50	19.2	BYE	19	22	NP		Light brown gravelly very silty SAND			
17D	8.71	8.71	13.0	E					Brown sandy silty GRAVEL			
32B	10.00	10.00	19.5	BXE	0	45	21	24	Brown mottled grey slightly sandy silty CLAY			
20D	10.53	10.53	21.3	E					Greyish brown slightly sandy silty CLAY			
1D	0.65	0.65	9.0	E					Brown slightly silty sandy GRAVEL			
4D	1.65	1.65	19.9	E					Brown slightly clayey slightly gravelly SAND			
6D	2.65	2.65	23.1	E					Brown sandy silty CLAY			
8D	3.65	3.65	24.2	E					Brown slightly sandy SILT			
10D	4.72	4.72	25.1	E					Brown slightly sandy SILT			
35B	5.50	5.50	23.2	BYE	0	29	NP		Orangish brown and grey slightly sandy SILT			
12D	5.95	5.95	26.0	E					Greyish brown slightly sandy silty CLAY			
15D	7.65	7.65	13.3	E					Orangish brown slightly silty gravelly SAND			
non plastic	;								S EN ISO 17892			
eparation						test met	hod		CONTRACT CHECKED			
ed on 0.425mi	m sieve		E - oven	dried (105oC		Y - cone	penetro	meter (te	st 4.4) 36638 WNJ			
	no./type	1D 1.00 4D 2.00 6D 3.00 30B 3.40 8D 4.00 10D 5.00 13D 7.00 31B 7.50 17D 8.71 32B 10.00 20D 10.53 1D 0.65 4D 1.65 6D 2.65 8D 3.65 10D 4.72 35B 5.50 12D 5.95 15D 7.65	no./type dep h (m) dep h (m) 1D 1.00 1.00 4D 2.00 2.00 6D 3.00 3.00 30B 3.40 3.40 8D 4.00 4.00 10D 5.00 5.00 13D 7.00 7.00 31B 7.50 7.50 17D 8.71 8.71 32B 10.00 10.00 20D 10.53 10.53 1D 0.65 0.65 4D 1.65 1.65 6D 2.65 2.65 8D 3.65 3.65 10D 4.72 4.72 35B 5.50 5.50 12D 5.95 5.95 15D 7.65 7.65	dep h (m) dep h (m) water content (%) 1D 1.00 1.00 8.4 4D 2.00 2.00 22.9 6D 3.00 3.00 24.4 30B 3.40 3.40 25.5 8D 4.00 4.00 25.0 10D 5.00 5.00 26.1 13D 7.00 7.00 10.4 31B 7.50 19.2 17D 8.71 8.71 13.0 32B 10.00 10.00 19.5 20D 10.53 10.53 21.3 1D 0.65 0.65 9.0 4D 1.65 1.65 19.9 6D 2.65 2.61 3.1 8D 3.65 3.65 24.2 10D 4.72 4.72 25.1 35B 5.50 5.95 26.0 15D 7.65 7.65 13.3	no./type dep h (m) dep h (m) water content (%) preparation and test (%) 1D 1.00 1.00 8.4 E# 4D 2.00 2.00 22.9 E 6D 3.00 3.00 24.4 E 30B 3.40 3.40 25.5 BYE 8D 4.00 4.00 25.0 E 10D 5.00 5.00 26.1 E 31B 7.50 7.50 19.2 BYE 17D 8.71 8.71 13.0 E 32B 10.00 10.00 19.5 BXE 20D 10.53 10.53 21.3 E 1D 0.65 0.65 9.0 E 4D 1.65 1.65 19.9 E 6D 2.65 2.3.1 E 1D 0.65 5.50 23.2 BYE 1D 4.72 4.72 25.1 E	dep h (m) dep h (m) water content preparation method >0.425 mm 1D 1.00 1.00 8.4 E# (%) 4D 2.00 2.00 22.9 E (%) 6D 3.00 3.00 24.4 E 1 30B 3.40 3.40 25.5 BYE 1 8D 4.00 4.00 25.0 E 1 10D 5.00 5.00 26.1 E 1 31B 7.50 7.50 19.2 BYE 19 17D 8.71 8.71 13.0 E 0 20D 10.53 10.53 21.3 E 0 4D 1.65 1.65 19.9 E 1 4D 1.65 1.65 23.1 E 0 31B 5.50 5.50 23.2 BYE 0 4D 1.65 1.65 19.9 E 0	no./type dep h (m) dep h (m) water (m) preparation and test method (m) 3-0.425 mm (m) mmm (m) <td>no./type depth (m) depth (m) water (m) oreparation (m) 30.425 (m) imit (m) imit (m) imit (m) 1D 1.00 1.00 8.4 E# 1 1 1 4D 2.00 2.00 22.9 E 1 2 8 NP 6D 3.00 3.00 24.4 E 1 28 NP 30B 3.40 3.40 25.5 BYE 1 28 NP 8D 4.00 4.00 25.0 E 1 28 NP 13D 7.00 7.00 10.4 E 1 28 NP 13D 7.00 7.00 10.4 E 1 22 NP 17D 8.71 8.71 13.0 E 1 21 21 20D 10.53 10.53 21.3 E 1 28 NP 4D 1.65 1.65 19.9</td> <td>no./type dept (m) dept (m) wate content (%) ordest method (%) -0.425 mm limit (%) limit (%) imit (%) i</td>	no./type depth (m) depth (m) water (m) oreparation (m) 30.425 (m) imit (m) imit (m) imit (m) 1D 1.00 1.00 8.4 E# 1 1 1 4D 2.00 2.00 22.9 E 1 2 8 NP 6D 3.00 3.00 24.4 E 1 28 NP 30B 3.40 3.40 25.5 BYE 1 28 NP 8D 4.00 4.00 25.0 E 1 28 NP 13D 7.00 7.00 10.4 E 1 28 NP 13D 7.00 7.00 10.4 E 1 22 NP 17D 8.71 8.71 13.0 E 1 21 21 20D 10.53 10.53 21.3 E 1 28 NP 4D 1.65 1.65 19.9	no./type dept (m) dept (m) wate content (%) ordest method (%) -0.425 mm limit (%) limit (%) imit (%) i			

Geotechnical Engineering Limited

LIQUID AND PLASTIC LIMITS

BS.1377 : PART 2 : 1990 : 4 and 5

CLIENT AMPLUS LTD

SITE CYRIL LE MARQUAND HOUSE, THE PARADE, JERSEY

borehole	san	nple	specimen	natural	specimen	fraction	liquid	plas ic	plasticity					
/trial pit	no./type	dep h	depth	water content	preparation and test	>0.425 mm	limit	limit	index	d	escription and rem	arks		
no.		(m)	(m)	(%)	method	(%)	(%)	(%)	(%)					
				(70)		(70)								
BH2	36B	9.00	9.00	19.4	BXE	2	43	20	23	Greyish browr silty CLAY	n slightly gravell	y slightly sandy		
BH2	18D	9.04	9.04	23.7	E					Brown slightly gravelly slightly sandy silty CLAY				
ВНЗ	4D	3.20	3.20	12.9	E					Brown sandy	GRAVEL			
BH3	12D	5.42	5.42	25.8	E					Greyish browr	n slightly sandy	SILT		
BH3	14D	6.42	6.42	27.0	Е					Brown slightly	sandy SILT			
BH3	31B	7.00	7.00	24.6	BYE	13	33	NP		Grey slightly g	ravelly slightly s	sandy SILT		
BH3	17D	7.95	7.95	12.7	Е					Brown mottled bluish grey slightly sandy gravelly silty CLAY				
ВНЗ	20D	9.95	9.95	22.8	E					Grey slightly g CLAY	ravelly slightly s	sandy silty		
ВНЗ	32B	10.50	10.50	15.9	BYE	21	24	NP		Grey gravelly	very silty SAND			
general rema								1	ı					
natural water			l in accorda	ince with I	BS EN ISO 1	17892 - 1	: 2014 (u	inless sp	ecified)					
NP denotes # denotes sa	-		ler than tha	t which is	recommend	ed in acco	ordance	with BS1	377 or BS	EN ISO 17892				
specimen pre	-						test met				ONTRACT	CHECKED		
A - as receiv					dried (60oC)				meter (te		26620	\A/ 51 1		
B - washed o C - air dried	on 0.425mi	m sieve		E - oven F - not kn	dried (105oC Iown	<i>.</i>)			ometer (te: apparatus		36638	WNJ		
							- case	granue	rpparatus	(1031 7.0)		I		

Geotechnical Engineering Limited ATTERBERG LINE PLOT

CLIENT AMPLUS LTD

SITE CYRIL LE MARQUAND HOUSE, THE PARADE, JERSEY

cv CE сн CL СІ Plasticity Index - PI (%) **∔**∆ ML МІ мн Mν ME Liquid Limit - LL (%)

	BH/TP No.	depth (m)	LL	PL	PI	remarks
	BH1	3.40	28	NP		
	BH1	7.50	22	NP		
Δ	BH1	10.00	45	21	24	
	BH2	5.50	29	NP		
+	BH2	9.00	43	20	23	
	BH3	7.00	33	NP		
	BH3	10.50	24	NP		

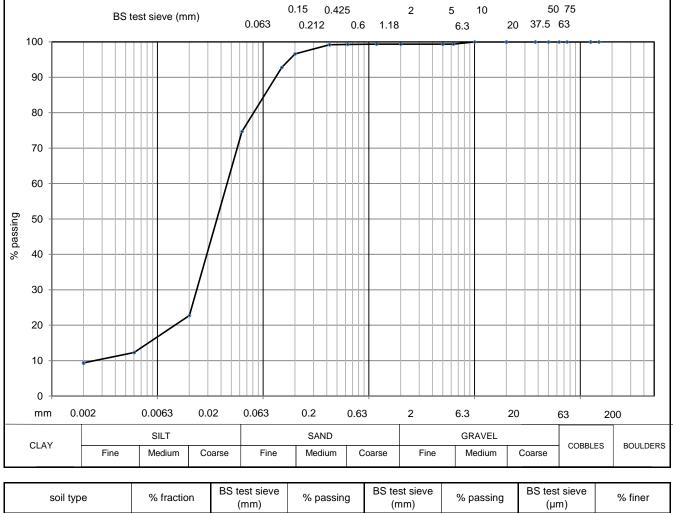
CONTRACT	CHECKED
36638	WNJ

BH1

CLIENT AMPLUS LTD

SITE CYRIL LE MARQUAND HOUSE, THE PARADE, JERSEY

DESCRIPTION Light brown slightly gravelly slightly sandy SILT


SAMPLE No./TYPE 30B

BH/TP No.

SAMPLE DEPTH (m) 3.40

SPECIMEN TOP (m) 3.40

SPECIMEN BASE (m) 4.00

soil type	% fraction	(mm)	% passing	(mm)	% passing	μm)	% finer
CLAY	9						
SILT	65	150		5	99	20	23
SILT & CLAY	75						
SAND	25	75		2	99	6	12
GRAVEL	1						
COBBLE & BOULDER	0	63		1.18	99	2	9
test method(s)	5.2 & 5.4	50		0.63	99		
test method							
		37.5		0.425	99		
5.2 - sieving							
		20		0.2	97		
5.3 - sedimentation by hy	drometer						
		10	100	0.15	93		
5.4 - sedimentation by pip	pette						
		6.3	99	0.063	75		
remarks						CONTRACT	CHECKED
# denotes sample tested is s	smaller than that wh	ich is recommende	ed in accordance w	i h BS EN 17892			0.12 OT LED
Particle density assigned an						36638	WNJ
		00000					

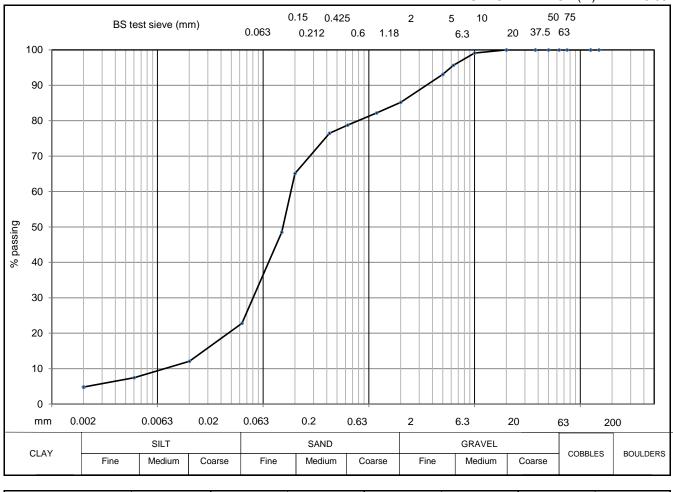
and the state

BH1

CLIENT AMPLUS LTD

SITE CYRIL LE MARQUAND HOUSE, THE PARADE, JERSEY

DESCRIPTION Light brown gravelly very silty SAND



BH/TP No.

SAMPLE DEPTH (m) 7.50

SPECIMEN TOP (m) 7.50

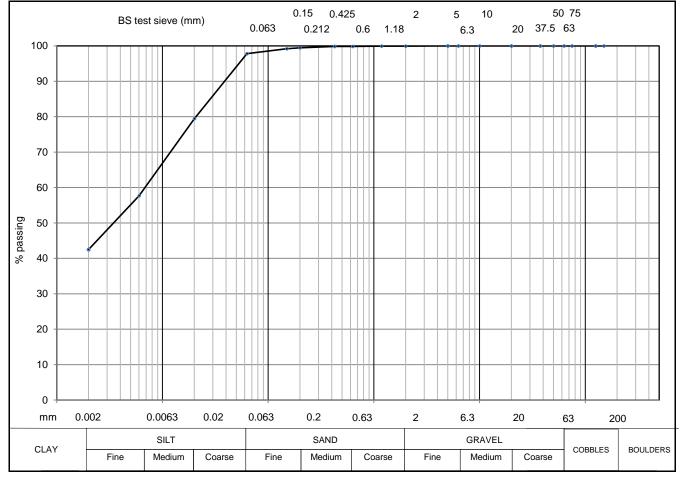
SPECIMEN BASE (m) 8.05

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (μm)	% finer
CLAY	5						
SILT	18	150		5	93	20	12
SILT & CLAY	23						
SAND	62	75		2	85	6	7
GRAVEL	15						
COBBLE & BOULDER	0	63		1.18	82	2	5
test method(s)	5.2 & 5.4	50		0.63	79		
test method							
		37.5		0.425	76		
5.2 - sieving							
		20	100	0.2	65		
5.3 - sedimentation by hy	drometer						
		10	99	0.15	49		
5.4 - sedimentation by pip	pette						
		6.3	96	0.063	23		
remarks						CONTRACT	CHECKED
# denotes sample tested is s			ed in accordance w	i h BS EN 17892			
Particle density assigned an	assumed value of	2.70 Mg/m3				36638	WNJ

BH1

CLIENT AMPLUS LTD

SITE CYRIL LE MARQUAND HOUSE, THE PARADE, JERSEY


SAMPLE No./TYPE 32B

BH/TP No.

DESCRIPTION Brown mottled grey slightly sandy silty CLAY

SPECIMEN TOP (m) 10.00

SPECIMEN BASE (m) 10.10

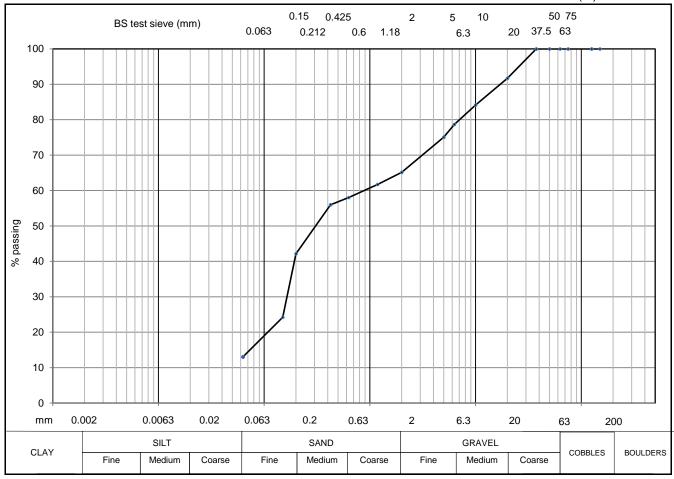
soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	43						
SILT	55	150		5	100	20	79
SILT & CLAY							
SAND	2	75		2	100	6	58
GRAVEL	0						
COBBLE & BOULDER	0	63		1.18	100	2	42
test method(s)	5.2 & 5.4	50		0.63	100		
test method							
		37.5		0.425	100		
5.2 - sieving		20		0.2	99		
5.3 - sedimentation by hy		10		0.15	99		
5.4 - sedimentation by pip	pette	6.3		0.063	98		
remarks						CONTRACT	CHECKED
# denotes sample tested is s Particle density assigned an			ed in accordance w	i h BS EN 17892		36638	WNJ

SAMPLE DEPTH (m) 10.00

BH2

CLIENT AMPLUS LTD

SITE CYRIL LE MARQUAND HOUSE, THE PARADE, JERSEY


DESCRIPTION Brown silty very gravelly SAND

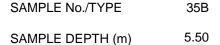
SAMPLE No./TYPE 34B

BH/TP No.

- SAMPLE DEPTH (m) 2.00
- SPECIMEN TOP (m) 2.00

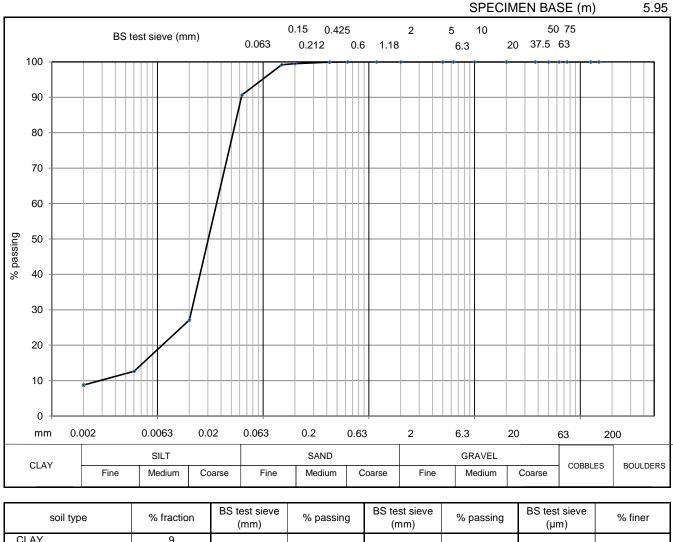
SPECIMEN BASE (m) 2.65

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passi	ng	BS test sieve (µm)	% finer
CLAY								
SILT		150		5	75		20	
SILT & CLAY	13							
SAND	52	75		2	65		6	
GRAVEL	35							
COBBLE & BOULDER	0	63		1.18	62		2	
test method(s)	5.2	50		0.63	58			
test method		50		0.03	50			
		37.5	100	0.425	56			
5.2 - sieving								
5		20	92	0.2	42			
5.3 - sedimentation by hy	drometer							
		10	84	0.15	24			
5.4 - sedimentation by pip	pette							
		6.3	79	0.063	13			
remarks						С	ONTRACT	CHECKED
# denotes sample tested is a			ed in accordance w	i h BS EN 17892				
Particle density assigned an			36638	WNJ				



BH2

CLIENT AMPLUS LTD


SITE CYRIL LE MARQUAND HOUSE, THE PARADE, JERSEY

DESCRIPTION Oragnish brown and grey slightly sandy SILT

BH/TP No.

SPECIMEN TOP (m) 5.50

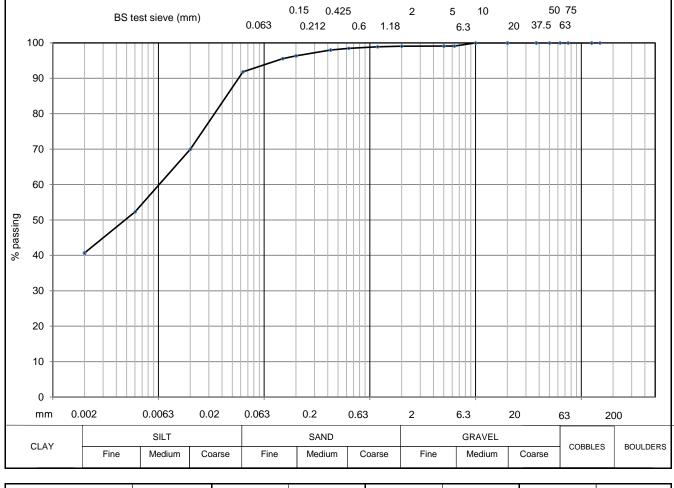
soil type	% fraction	(mm)	% passing	(mm)	% passing	g (μm)	% finer		
CLAY	9								
SILT	82	150		5		20	27		
SILT & CLAY	91								
SAND	9	75		2		6	13		
GRAVEL	0								
COBBLE & BOULDER	0	63		1.18	100	2	9		
test method(s)	5.2 & 5.4	50		0.63	100				
test method									
		37.5		0.425	100				
5.2 - sieving									
		20		0.2	99				
5.3 - sedimentation by hy	drometer								
		10		0.15	99				
5.4 - sedimentation by pip	pette								
		6.3		0.063	91				
remarks						CONTRACT	CHECKED		
# denotes sample tested is a									
Particle density assigned an assumed value of 2.70 Mg/m3 36638									

BH2

CLIENT AMPLUS LTD

SITE CYRIL LE MARQUAND HOUSE, THE PARADE, JERSEY

SAMPLE No./TYPE 36B

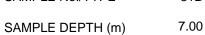

BH/TP No.

DESCRIPTION Greyish brown slightly gravelly slightly sandy silty CLAY

SAMPLE DEPTH (m) 9.00

SPECIMEN TOP (m) 9.00

SPECIMEN BASE (m) 9.50


soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	41						
SILT	51	150		5	99	20	70
SILT & CLAY	92						
SAND	7	75		2	99	6	52
GRAVEL	1						
COBBLE & BOULDER	0	63		1.18	99	2	41
test method(s)	5.2 & 5.4	50		0.63	98		
test method							
		37.5		0.425	98		
5.2 - sieving							
		20		0.2	96		
5.3 - sedimentation by hy	drometer						
		10	100	0.15	96		
5.4 - sedimentation by pip	pette						
		6.3	99	0.063	92		
remarks						CONTRACT	CHECKED
# denotes sample tested is s			ed in accordance w	i h BS EN 17892			
Particle density assigned an	assumed value of	2.70 Mg/m3				36638	WNJ

and the state

CLIENT AMPLUS LTD

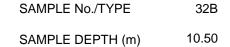
SITE CYRIL LE MARQUAND HOUSE, THE PARADE, JERSEY

DESCRIPTION Grey slightly gravelly slightly sandy SILT

SPECIMEN TOP (m) 7.00

SPECIMEN BASE (m) 7.42 0.15 50 75 0.425 2 5 10 BS test sieve (mm) 20 37.5 63 0.063 0.212 0.6 1.18 6.3 100 90 80 70 60 % passing 50 40 30 20 10 0 0.002 0.0063 0.02 0.063 0.2 0.63 2 6.3 20 mm 63 200 SILT SAND GRAVEL CLAY BOULDERS COBBLES Fine Fine Medium Coarse Fine Medium Coarse Medium Coarse

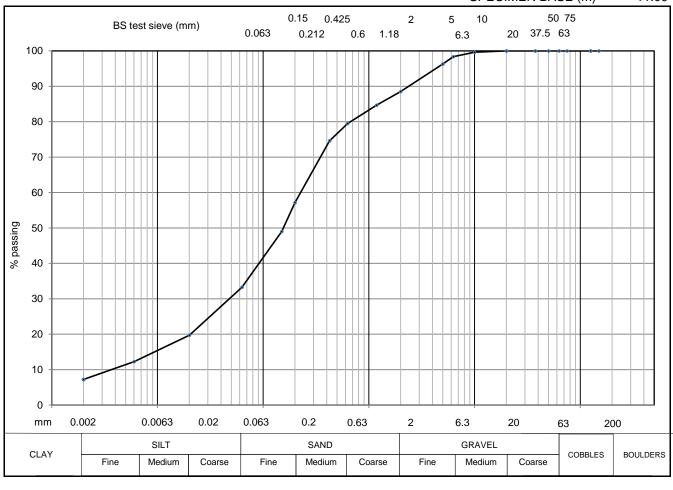
soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	9						
SILT	73	150		5	98	20	33
SILT & CLAY	82						
SAND	13	75		2	96	6	16
GRAVEL	4						
COBBLE & BOULDER	0	63		1.18	95	2	9
test method(s)	5.2 & 5.4	50		0.63	94		
test method							
		37.5		0.425	93		
5.2 - sieving							
		20		0.2	92		
5.3 - sedimentation by hy	drometer						
		10	100	0.15	90		
5.4 - sedimentation by pip	pette						
		6.3	98	0.063	82		
remarks						L	CHECKED
# denotes sample tested is s	maller than that w	hich is recommende	d in accordance w	6 BS EN 17902		JUNIKAUI	CHECKED
Particle density assigned an			a in accordance w	111 DO LIN 17092		36638	WNJ
						20020	VVINJ


A Roal

BH3

CLIENT AMPLUS LTD

SITE CYRIL LE MARQUAND HOUSE, THE PARADE, JERSEY


DESCRIPTION Grey gravelly very silty SAND

BH/TP No.

SPECIMEN TOP (m) 10.50

SPECIMEN BASE (m) 11.00

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	7						
SILT	26	150		5	96	20	20
SILT & CLAY	33						
SAND	55	75		2	89	6	12
GRAVEL	11						
COBBLE & BOULDER	0	63		1.18	85	2	7
test method(s)	5.2 & 5.4	50		0.63	80		
test method		1					
		37.5		0.425	75		
5.2 - sieving							
		20	100	0.2	57		
5.3 - sedimentation by hy	drometer						
		10	100	0.15	49		
5.4 - sedimentation by pip	pette						
		6.3	98	0.063	33		
remarks						CONTRACT	CHECKED
# denotes sample tested is s			ed in accordance w				
Particle density assigned an	assumed value of	2.70 Mg/m3				36638	WNJ

Geotechnical Engineering Limited UNIAXIAL COMPRESSIVE STRENGTH OF ROCK

I.S.R.M. Suggested Methods : 2007 Edition

CLIENT AMPLUS LTD

SITE CYRIL LE MARQUAND HOUSE, THE PARADE, JERSEY

borehole	sam	nple	specimen	diameter	height	H/D	moisture	bulk	loading	time to	UCS		
/trial pit	no /type	depth	depth	D	H	H/D	content	density	rate	failure		description, codes	and remarks
no.		(m)	(m)	(mm)	(mm)		(%)	(Mg/m3)	(kN/min)	(min:sec)	(MPa)		
BH3	30C	3.65	3.65	83.1	181.8	2.19	6	2.46	20	09:14	44.05	Grey CONGLOMER	ATE, P, Ax. H/D
												ratio falls outside IS	Rivi specification
BH3	33C	11.13	11.70	83.2	219.2	2.63	0.3	2.67	40	08:16	68.89	Grey LIMESTONE,	P, Ax.
	<u> </u>												
general re			مالي مايتالي	oro (od) +	t mochin -		20				
sample ob coding:	tained fro moisture		ally drilled o		ss specifi sample s		t machine	- vj1600	00 failure mo	ode			
coung.			n ure content		U - not w					cleavage			
	F - fully						ling film/fo	oil	Ca - cata			CONTRACT	CHECKED
	S - soak		-		W - waxe				Sh - shea				
P - air/partially dried							sealed G	eoline	Ex - explo			36638	WNJ
						<u>.</u>			Ot - other				

Geotechnical Engineering Limited

POINT LOAD STRENGTH TEST

I.S.R.M. Suggested Methods : 2007 Edition

CLIENT AMPLUS LTD

SITE CYRIL LE MARQUAND HOUSE, THE PARADE, JERSEY

borehole /trial pit	sample depth	test type	test orien- ta ion	moisture condition	width	length	platen sep.	failure load	equiv. diam.	ls	size factor	ls(50)		
no.	(m)				W (mm)	L (mm)	D (mm)	P (kN)	De (mm)	(MPa)		(MPa)	description ar	nd remarks
BH1	14.00	A	Х		90		45	1.18	71.81	0.23	1.18	0.27	Grey SILTSTONE	
BH1	14.00	D	Y	Ρ		50	90	5.18	90.00	0.64	1.30	0.83	Grey SILTSTONE	
BH1	14.40	A	х		90		45	4.61	71.81	0.89	1.18	1.05	Grey SILTSTONE	
BH1	14.40	D	Y	Ρ		50	90	10.57	90.00	1.30	1.30	1.70	Grey SILTSTONE	
BH1	16.00	A	х		90		45	2.80	71.81	0.54	1.18	0.64	Grey LIMESTONE	
BH1	16.00	D	Y	Ρ		50	90	13.37	90.00	1.65	1.30	2.15	Grey LIMESTONE	
BH1	16.20	D	Y	Ρ		50	90	10.79	90.00	1.33	1.30	1.74	Grey SILTSTONE	
BH2	12.70	A	х		90		50	0.67	75.69	0.12	1.21	0.14	Grey SILTSTONE	
BH2	12.70	D	Y	Ρ		60	90	0.89	90.00	0.11	1.30	0.14	Grey SILTSTONE	
BH2	14.62	D	Y	Ρ		50	90	3.32	90.00	0.41	1.30	0.53	Grey SILTSTONE	
BH3	13.65	D	Y	Ρ		60	90	25.94	90.00	3.20	1.30	4.17	Grey LIMESTONE	
BH3	15.70	D	Y	Ρ		50	90	25.23	90.00	3.11	1.30	4.06	Grey LIMESTONE	
BH3	4.60	D	Y	Ρ		50	80	15.49	80.00	2.42	1.24	2.99	Grey CONGLOME	RATE
BH3	4.60	A	х	Ρ	80		40	11.01	63.83	2.70	1.12	3.02	Grey CONGLOME	RATE
general rer	narks													
tests carrie test machir			nce with	I.S.R.M.(2007): S	uggeste	d Methoo	ds for Det	ermining I	Point Loa	ad Streng	gth		
test type				ntation rel	ative to				moisture				CONTRACT	CHECKED
A - axial D - diametr I - irregular			X - perp Y - para Z - oblic			U - unkr	nown		N - natura P - partia S - soake	lly air dri		nt	36638	WNJ

🔅 eurofins

Chemtest Ltd Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-27299-1		
Initial Date of Issue:	12-Aug-2021		
Client	Geotechnical Engineering Ltd		
Client Address:	Centurion House Olympus Park Quedgeley Gloucester Gloucestershire GL2 4NF		
Contact(s):	GEL Tom Best		
Project	36638 Cyril Le Marquand House, The Parade, Jersey		
Quotation No.:		Date Received:	09-Aug-2021
Order No.:	5327	Date Instructed:	09-Aug-2021
No. of Samples:	6		
Turnaround (Wkdays):	5	Results Due:	13-Aug-2021
Date Approved:	12-Aug-2021		

Glynn Harvey, Technical Manager

<u> Results - Soil</u>

Project: 36638 Cyril Le Marquand House, The Parade, Jersey

Client: Geotechnical Engineering Ltd	Chemtest Job No.:			21-27299	21-27299	21-27299	21-27299	21-27299	21-27299	
Quotation No.:	(Chemte	st Sam	ple ID.:	1256022	1256023	1256024	1256025	1256026	1256027
Order No.: 5327		Clier	nt Samp	le Ref.:	30	31	32	34	35	32
		Clie	ent Sam	ple ID.:	3.40	7.50	10.00	2.00	5.50	7.00
		Sa	mple Lo	ocation:	BH1	BH1	BH1	BH2	BH2	BH3
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	pth (m):	4.00	8.05	10.50	2.65	5.95	7.42
		Date Sampled:		05-Aug-2021	05-Aug-2021	05-Aug-2021	05-Aug-2021	05-Aug-2021	05-Aug-2021	
Determinand	Accred.	SOP	Units	LOD						
Moisture	N	2030	%	0.020	18	16	14	6.4	16	17
pH (2.5:1)	N	2010		4.0	8.9	9.0	8.7	9.0	8.7	8.2
Magnesium (Water Soluble)	N	2120	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.012
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010	< 0.010	0.12	0.035	< 0.010	0.34
Total Sulphur	U	2175	%	0.010	0.010	< 0.010	0.090	0.050	0.010	0.20
Chloride (Water Soluble)	U	2220	g/l	0.010	< 0.010	< 0.010	0.023	< 0.010	< 0.010	0.010
Nitrate (Water Soluble)	N	2220	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Sulphate (Acid Soluble)	U	2430	%	0.010	< 0.010	< 0.010	0.015	0.014	< 0.010	0.051

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently

corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700 Fax: (01244) 528701 email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

AMPLUS Ltd Unit 1 Thistle Grove St. Lawrence Jersey Jersey JE3 1NN

Attention: Matthew Warner

CERTIFICATE OF ANALYSIS

26 July 2021
AMPLUS Ltd
210715-104
2033
Cyril Le Marchand House
607111

This report has been revised and directly supersedes 606949 in its entirety.

We received 1 sample on Thursday July 15, 2021 and 1 of these samples were scheduled for analysis which was completed on Sunday July 25, 2021. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

<u>Sonia McWhan</u> Operations Manager

ALS Life Sciences Limited. ALS Life Sciences Limited registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden,
Deeside, CH5 3US. Registered in England and Wales No. 4057291.Version: 2.8Version Issued: 26/07/2021

		C	ERTIFICATE OF ANALY	SIS	Validated
ALS	SDG: Location:	607111 606949			
		Rec	eived Sample Over	rview	
Lab Sample	No(s)	Cu tomer Sampl	e Ref AGS R	ef. Depth (m)	Sampled Date
24638237	7	BH3	ES2	1.20 - 1.25	05/07/2021

Only received samples which have had analysis scheduled will be shown on the following pages.

		С	ERT	٦F	IC/	TE OF ANALYSIS		Validated
SDG: Location:	210715 Cyril Le					eference: 2033 Jmber: 2033	Report Number: Superseded Report:	607111 606949
Results Legend X Test No Determination Possible	Lab Sample	e No(s)			24638237			
Caraly Tana	Custon Sample Ref				BH3			
Sample Types - S - Soil/Solid UNS - Unspecified Solid CW - Ground Water SW - Surface Water LE - Land Leachate PL Prepared Leachate	AGS Refe	rence			ES2			
PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage	Depth	(m)			1.20 - 1.25			
US Untreated Sewage RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas	Contai	ner	1kg TUB with Handle	250g Amber Jar (ALE210)	60g VOC (ALE215)			
OTH - Other	Sample 7	Гуре	s	s	s			
ANC at pH4 and ANC at pH 6	All	NDPs: 0 Tests: 1		X				
Anions by Kone (w)	All	NDPs: 0 Tests: 1	x	^				
CEN Readings	All	NDPs: 0 Tests: 1	x					
Coronene	All	NDPs: 0 Tests: 1		X				
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 1	x					
Dissolved Organic/Inorganic Carbon	All	NDPs: 0 Tests: 1	x					
EPH by GCxGC-FID	All	NDPs: 0 Tests: 1		X				
Fluoride	All	NDPs: 0 Tests: 1	x					
Loss on Ignition in soils	All	NDPs: 0 Tests: 1		x				
Mercury Dissolved	All	NDPs: 0 Tests: 1	X					
PAH 16 & 17 Calc	All	NDPs: 0 Tests: 1		X				
PAH by GCMS	All	NDPs: 0 Tests: 1		x				
PCBs by GCMS	All	NDPs: 0 Tests: 1		x				
pH	All	NDPs: 0 Tests: 1		x				
Phenols by HPLC (W)	All	NDPs 0 Tests: 1	x					

		С	ER	TIF	IC/	TE OF ANALYSIS		Validated
SDG: Location:	210715 Cyril Le	-104 Marchand				ference: 2033 Imber: 2033	Report Number: Superseded Report:	607111 606949
Results Legend X Test N No Determination Possible	Lab Sample	e No(s)			24638237			
Sample Types -	Custon Sample Ref				BH3			
S - Soil/Solid UNS - Unspecified Solid GW - Cround Water SW - Surface Water LE - Land Leachate	AGS Refe	rence			ES2			
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage	Depth	(m)			1.20 - 1.25			
US - Untreated Sewage RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL Sludge G - Gas	Contair	ner	1 kg TUB with Handle	2 50g Amber Jar (ALE2 10)	60g VOC (ALE215)			
OTH - Other	Sample 7	уре	s					
Sample description	All	NDPs: 0 Tests: 1		x				
Total Dissolved Solids	All	NDPs: 0 Tests: 1	x					
Total Organic Carbon	All	NDPs: 0 Tests: 1		x				

VOC MS (S)

All

NDPs: 0 Tests: 1

Х

Validated

210715-104 Client Reference: 2033 Cyril Le Marchand HolOrder Number: 2033 Report Number: Superseded Report: 607111 606949

Sample Descriptions

Grain Size	s							
very fine	<0.063mm	fine <mark>0.06</mark>	3mm - 0.1mm m	edium 0.1mn	n - 2mm coa	rse 2mm - 1	0mm very coa	arse >10mm
Lab Sample	No(s) Custon	er Sample Ref.	Depth (m)	Colour	Description	Inclusions	Inclusions 2	
2463823	7	BH3	1 20 1 25	Dark Brown	Sandy Loam	Stones	None	

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

ALS

Validated

SDG: Location	1:	210715-10 Cyril Le Ma	04 Cliei archand Hoi <mark>Ord</mark> e	nt Reference: 2033 er Number: 2033	3 3	Report Num Superseded Re	ber: 607 aport: 606	
Results Legend # ISO17025 accredited.	Cus	stomer Sample Ref.	BH3					
M mCERTS accredited.			BH3 ES2 1.20 - 1.25					
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	Soil/Solid (S)					
ot.unfilt Total / unfiltered sample. Subcontracted - refer to subcontract	or report for	Sample Type Date Sampled	05/07/2021 00:00					
accreditation status.		Sampled Time	15/07/2021					
efficiency of the method. The results	of individual	Date Received	210715-104					
compounds within samples aren't co	rrected for	SDG Ref	24638237 ES2					
the recovery (F) Trigger breach confirmed		Lab Sample No.(s) AGS Reference	ESZ					
1-4+§@ Sample deviation (see appendix)								
Component	LOD/Units		0.0					
Moisture Content Ratio (% of as		PM024	8.2					
received sample)	%							
Loss on ignition	<0.7 %	TM018	1.68					
Organic Carbon, Total	<0.2	TM132	M <0.2					
v	%		М					
рН	1	TM133	8.23					
PCB congener 28	pH Units <3	TM168	M <3					
OB WINGENET ZO	<₃ µg/kg	801WI	<3 M					
PCB congener 52	<3	TM168	<3					
	µg/kg		М					
PCB congener 101	<3	TM168	<3					
DOD (12	µg/kg	-	M	└─── ↓				
PCB congener 118	<3	TM168	<3					
PCB congener 138	µg/kg <3	TM168	M <3	┝───┼				
1 OD CONVENIER 130	<₃ µg/kg	801WI	<3 M					
PCB congener 153	<3	TM168	<3					
g	μg/kg		м М					
PCB congener 180	<3	TM168	<3					
	µg/kg		М					
Sum of detected PCB 7	<21	TM168	<21					
Congeners ANC @ pH 4	µg/kg <0.03	TM182	0.0421	┝────┼				
ANC @ pr 4	mol/kg	111102	0.0421					
ANC @ pH 6	<0.03	TM182	<0.03					
CI	mol/kg							
PAH Total 17 (inc Coronene)	<10	TM410	<10					
Moisture Corrected	mg/kg							
Coronene	<200	TM410	<200					
	µg/kg							
EPH Surrogate % recovery**	%	TM415	93.2					
		THUE						
Mineral Oil >C10-C40	<5 mg/kg	TM415	<5					
	mgring	+ +						
		+						
		+ +		<u>├</u>				
		+						
				 -				
		1						

(ALS)

Validated

				ICATE OF /				
SDG: Location	n.	210715-1 Cvril Le M	04 Clie archand HojOrd	nt Reference: 20 er Number: 20	33	Report Numl Superseded Re	oer: 607 sport: 606	
VOC MS (S)		0111 20 11		20				
Results Legend # ISO17025 accredited.	Cus	tomer Sample Ref.	BH3 BH3 ES2					
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	1.20 - 1.25 Soil/Solid (S)					
tot.unfilt Total / unfiltered sample. * Subcontracted - refer to subcontract	tor report for	Sample Type Date Sampled	05/07/2021					
accreditation status. ** % recovery of the surrogate standard	d to check the	Sampled Time Date Received	15/07/2021					
efficiency of the method. The results compounds within samples aren't co the recovery	prrected for	SDG Ref Lab Sample No.(s)	24638237					
(F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)		AGS Reference						
Component Dibromofluoromethane**	LOD/Units	Method TM116	102					
	%							
Toluene-d8**	%	TM116	101					
4-Bromofluorobenzene**	%	TM116	100					
Methyl Tertiary Butyl Ether	<10 µg/kg	TM116	<10 M					
Benzene	<9 µg/kg	TM116	<9 M					
Toluene	<7 µg/kg	TM116	<7 M					
Ethylbenzene	<4 µg/kg	TM116	<4 M					
p/m-Xylene	<10 µg/kg	TM116	<10 #					
o-Xylene	<10 µg/kg	TM116	<10 M					
Sum of BTEX	<40 µg/kg	TM116	<40					

		CERTIFICA	TE OF ANA	ALYSIS	Validated			
SDG: Location:	210715-104 Cyril Le Marcha	Client Ref and HoiOrder Nu	erence: 2033 mber: 2033	Re Su	port Number: perseded Repor	60711 t: 60694		
	CEN 10	:1 SINGLE	STAGE LEA	ACHATE TES	т			
CEN ANALYTICAL RES	SULTS				F	REF : BS E	N 12457/	
Client Reference			Site Location	l	Cyril I	_e Marchand	House	
Mass Sample taken (kg)	0.097		Natural Moist	ure Content (%				
Mass of dry sample (kg)	0.090		Dry Matter Co		, 92.5			
Particle Size <4mm	>95%							
Case					Landfil	I Waste Acce	eptance	
SDG	210715 104					Criteria Limit		
Lab Sample Number(s)	24638237					1		
Sampled Date	05 Jul 2021					Stable		
Customer Sample Ref.	BH3 ES2				Inert Waste	Non-reactive Hazardous Waste	Hazardous	
Depth (m)	1 20 1 25				Landfill	in Non- Hazardous	Waste Landfil	
Solid Waste Analysis	Result					Landfill		
Total Organic Carbon (%)	<0.2				3	5	6	
Loss on Ignition (%)	1.68				-	-	10	
Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg)	<0.04				6	-	-	
Mineral Oil (mg/kg)	<5				500	-	-	
PAH Sum of 17 (mg/kg)	<10				100	-	-	
pH (pH Units)	8.23 <0.03				-	>6	-	
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)	0.0421				-	-	-	
Eluate Analysis		n 10:1 eluate (mg/l) A2 10:1 conc ⁿ leached (mg/kg) Limit values for complia using BS EN 12457-3						
Arsenic	0.00818	Limit of Detection	Result 0.0818	Limit of Detection <0.005	0.5	2	25	
Barium	0.00257	<0.0003	0.0257	<0.002	20	100	300	
Cadmium	<0.00008	< 0.00002	< 0.0008	< 0.0008	0.04	1	5	
Chromium	0 001	0 001	<0 01	0 01	0.5	10	70	
Copper	0.000389	<0.0003	0.00389	< 0.003	2	50	100	
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2	
Molybdenum	<0.003	<0.003	<0.03	<0.03	0.5	10	30	
Nickel	<0.0004	<0.0004	<0.004	<0.004	0 4	10	40	
Lead	0 0002	0 0002	0 002	0 002	0.5	10	50	
Antimony	< 0.001	< 0.001	< 0.01	< 0.01	0.06	0.7	5	
Selenium Zinc	< 0.001	< 0.001	<0.01 <0.01	<0.01 <0.01	0.1	0.5 50	7 200	
Chloride	<0.001 <2	<0.001 <2	<0.01	<0.01	800	15000	25000	
Fluoride	0 5	0 5	5	5	10	150	500	
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000	
Total Dissolved Solids	27.8	<5	278	<50	4000	60000	100000	
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-	
Dissolved Organic Carbon	<3	<3	<30	<30	500	800	1000	
Leach Test Information								

Leach Test Information

Date Prepared	17-Jul-2021
pH (pH Units)	8.25
Conductivity (µS/cm)	34.60
Temperature (°C)	22.00
Volume Leachant (Litres)	0.893

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALS Environmental cannot be held responsible for any discrepancies with current legislation

SDG:

Location:

CERTIFICATE OF ANALYSIS 210715-104 Client Reference Cyril Le Marchand HolOrder Number: Client Reference: 2033

Report Number: Superseded Report:

607111 606949

Validated

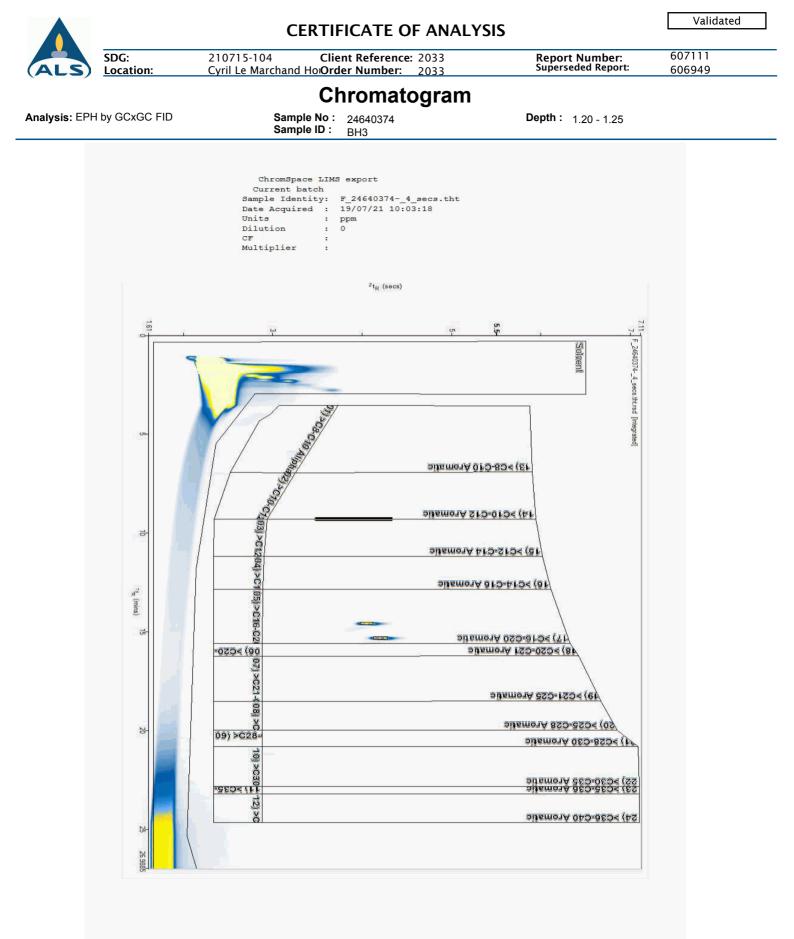
Table of Results - Appendix

2033

lethod No	Reference	Description
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material
PM115		Leaching Procedure for CEN One Stage Leach Test 2:1 & 10:1 1 Step
TM018	BS 1377: Part 3 1990	Determination of Loss on Ignition
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS
TM123	BS 2690: Part 121:1981	The Determination of Total Dissolved Solids in Water
TM132	In - house Method	ELTRA CS800 Operators Guide
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils
TM182	CEN/TC 292 - WI 292046-chacterization of waste-leaching Behaviour Tests- Acid and Base Neutralization Capacity Test	Determination of Acid Neutralisation Capacity (ANC) Using Autotitration in Soils
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM218	Shaker extraction - EPA method 3546.	The determination of PAH in soil samples by GC-MS
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC
TM410	Shaker extraction-In house coronene method	Determination of Coronene in soils by GCMS
TM415	Analysis of Petroleum Hydrocarbons in Environmental Media.	Determination of Extractable Petroleum Hydrocarbons in Soils by GCxGC-FID

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).


607111

606949

Report Number: Superseded Report:

210715-104 Client Reference: 2033 Cyril Le Marchand HoiOrder Number: 2033 Test Completion Dates

Lab Sample No(s)	24638237
Cu tomer Sample Ref	BH3
AGS Ref.	500
	ES2
Depth	1.20 - 1.25
Туре	Soil/Solid (S)
ANC at pH4 and ANC at pH 6	19-Jul-2021
Anions by Kone (w)	21-Jul-2021
CEN 10:1 Leachate (1 Stage)	17-Jul-2021
CEN Readings	20-Jul 2021
Coronene	18-Jul-2021
Dissolved Metals by ICP-MS	20-Jul-2021
Dissolved Organic/Inorganic Carbon	25-Jul-2021
EPH by GCxGC-FID	20-Jul-2021
Fluoride	20-Jul-2021
Loss on Ignition in soils	21-Jul-2021
Mercury Dissolved	21-Jul-2021
Moisture at 105C	17-Jul-2021
PAH 16 & 17 Calc	19-Jul-2021
PAH by GCMS	19-Jul-2021
PCBs by GCMS	19-Jul-2021
pH	16-Jul-2021
Phenols by HPLC (W)	21-Jul-2021
Sample description	15-Jul-2021
Total Dissolved Solids	21-Jul-2021
Total Organic Carbon	20-Jul-2021
VOC MS (S)	18-Jul-2021

ALS Environmental, Land				QF.7.5.1 Data Amendments Form (Issue No Date: 03/03/2020 Issued and Authorised by Quality Manage			
SDG	Sample Event	Sample ID	Date Amended	Amendment Reason	Previous Reference	New Reference	Supersedes Report
210715-104	24638237	BH3	26/07/2021	Sample ID Change	ES 1	ES 2	606949

SDG:	210715-104	Client Reference:	2033	Report Number:	607111
Location:	Cyril Le Marchand House	Order Number:	2033	Superseded Report:	606949

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part hereof un il the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

6. NDP - No determination possible due to insufficient/unsuitable sample.

7. Results relate only to the items tested.

8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

9. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remedia ion fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

11. In certain circumstances the method detec ion limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

12. Mercury results quoted on soils will not include volatile mercury as he analysis is performed on a dried and crushed sample.

13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically iden ify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive iden ification, volatiles by GCMS should be utilised.

16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17. **Tentatively Identified Compounds (TICs)** are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjecte to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

18. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
§	Sampled on date not provided

19. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and he sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house me hod of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for iden ification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stoe Type	Common Name
Chrysoile	White Asbestos
Amosite	BrownAsbestos
Crocidolite	Blue Adve stos
Fibrous Acimolite	-
Ribio us Anhophyllite	-
Fibrous Tremolite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μm diameter, longer than 5 μm and wi h aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Standing Committee of Analysts, The Quantification of Asbestos in Soil (2017).

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700 Fax: (01244) 528701 email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

AMPLUS Ltd Unit 1 Thistle Grove St. Lawrence Jersey Jersey JE3 1NN

Attention: Matthew Warner

CERTIFICATE OF ANALYSIS

26 July 2021
AMPLUS Ltd
210715-107
2033
Cyril Le Marquand House
607105

This report has been revised and directly supersedes 606950 in its entirety.

We received 1 sample on Thursday July 15, 2021 and 1 of these samples were scheduled for analysis which was completed on Sunday July 25, 2021. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

<u>Sonia McWhan</u> Operations Manager

ALS Life Sciences Limited. ALS Life Sciences Limited registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden,
Deeside, CH5 3US. Registered in England and Wales No. 4057291.Version: 2.8Version Issued: 26/07/2021

		Validated			
ALS	SDG: Location:	210715-107 Cyril Le Marquand	Client Reference: 2033 HoOrder Number: 2033	Report Number: Superseded Report:	607105 606950
Lab Sample	No(s)		eived Sample Ove		Sampled Data
2463827		Cu tomer Sample BH2	Ker AGS ES		Sampled Date 08/07/2021

Only received samples which have had analysis scheduled will be shown on the following pages.

	CERTIFICATE OF ANALYSIS						
SDG: Location:	210715 Cyril Le	5-107 Marguano	Clie HoOrd I	ent Re ler Ni	eference: 2033 umber: 2033	Report Number: Superseded Report:	607105 606950
Results Legend X Test No Determination Possible	Lab Sampl	e No(s)		24638277			
Cample Toron	Custon Sample Ref			BH2			
Sample Types - S - Soil/Solid UNS - Unspecified Solid CW - Ground Water SW - Surface Water LE - Land Leachate PL Prepared Leachate	AGS Refe	rence		ES2			
PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage	Depth	(m)		0.65 - 0.70			
US Untreated Sewage RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas	Contai	ner	(ALE210) 1kg TUB with Handle	60g VOC (ALE215)			
OTH - Other	Sample 7	Гуре	ν u				
ANC at pH4 and ANC at pH 6	All	NDPs: 0 Tests: 1	x				
Anions by Kone (w)	All	NDPs: 0 Tests: 1	x				
CEN Readings	All	NDPs: 0 Tests: 1	x				
Coronene	All	NDPs: 0 Tests: 1	x				
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 1	X				
Dissolved Organic/Inorganic Carbon	All	NDPs: 0 Tests: 1	X				
EPH by GCxGC-FID	All	NDPs: 0 Tests: 1	x				
Fluoride	All	NDPs: 0 Tests: 1	X				
Loss on Ignition in soils	All	NDPs: 0 Tests: 1	x				
Mercury Dissolved	All	NDPs: 0 Tests: 1	x				
PAH 16 & 17 Calc	All	NDPs: 0 Tests: 1	x				
PAH by GCMS	All	NDPs: 0 Tests: 1	X				
PCBs by GCMS	All	NDPs: 0 Tests: 1	X				
рН	All	NDPs: 0 Tests: 1	x				
Phenols by HPLC (W)	All	NDPs 0 Tests: 1	x				

		Validated							
SDG: Location:	210715-107Client Reference: 2033Report Number: Superseded Report:Cyril Le Marguand HoOrder Number: Superseded Report:2033Content of the second secon						t:	607105 606950	
Results Legend X Test N No Determination Possible	Lab Sample No(s)				24638277				
Sample Types -	Custon Sample Ref				BH2				
S - Soil/Solid UNS - Unspecified Solid GW - Cround Water SW - Surface Water LE - Land Leachate	AGS Reference				ES2				
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m)				0.65 - 0.70				
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL Sludge	Contair	ner	1 kg TUB with Handle	250g Amber Jar (ALE210)	60g VOC (ALE215)				
G - Cas OTH - Other	Sample T	уре	s						
Sample description	All	NDPs: 0 Tests: 1		x					
Total Dissolved Solids	All	NDPs: 0 Tests: 1	x						
Total Organic Carbon	All	NDPs: 0 Tests: 1		x					

VOC MS (S)

All

NDPs: 0 Tests: 1

Х

Validated

Client Reference: 2033 210715-107

Cyril Le Marguand HoOrder Number: 2033 Report Number: Superseded Report:

607105 606950

Sample Descriptions

Grain Size	s								
very fine	<0.063mm	fine 0.06	53mm - 0.1mm	medium	0.1mm	- 2mm co	arse 2mm -	10mm very co	arse >10mm
Lab Sample	No(s) Custo	ner Sample Ref.	Depth (m)	Co	olour	Description	Inclusions	Inclusions 2	1
2463827	77	BH2	0 65 0 70	Dark	Brown	Sandy Loam	Stones	None	1

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

AIS	

Validated

SDG: Location	1:	210715-1 Cyril Le M		nt Reference: 20 er Number: 20	Report Numb Superseded Re	105 950
Results Legend	Con	stomer Sample Ref.	840		 	
# ISO17025 accredited. M mCERTS accredited.	Cu	stomer Sampie Rei.	BH2 BH2 ES2			
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.65 - 0.70 Soil/Solid (S)			
tot.unfilt Total / unfiltered sample. Subcontracted - refer to subcontracted	or report for	Sample Type Date Sampled	08/07/2021 00:00			
accreditation status. ** % recovery of the surrogate standard	to check the	Sampled Time Date Received	15/07/2021 210715-107			
efficiency of the method. The results compounds within samples aren't co	rrected for	SDG Ref	24638277 ES2			
the recovery (F) Trigger breach confirmed 1-4+\$@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	E52			
Component	LOD/Units					
Moisture Content Ratio (% of as received sample)	%	PM024	21			
Loss on ignition	<0.7 %	TM018	38.8			
Organic Carbon, Total	<0.2	TM132	M<\$0.2			
pН	% 1	TM133	M 8.65			
-	pH Units		М			
PCB congener 28	<3 µg/kg	TM168	<3 M			
PCB congener 52	<3 µg/kg	TM168	<3 M			
PCB congener 101	<3 µg/kg	TM168	<3			
PCB congener 118	<3	TM168	M <3			
PCB congener 138	µg/kg <3	TM168	M <3			
PCB congener 153	µg/kg <3	TM168	M <3			
PCB congener 180	µg/kg <3	TM168	M <3			
	µg/kg		м			
Sum of detected PCB 7 Congeners	<21 µg/kg	TM168	<21			
ANC @ pH 4	<0.03 mol/kg	TM182	0.678			
ANC @ pH 6	<0.03 mol/kg	TM182	0.18			
PAH Total 17 (inc Coronene) Moisture Corrected	<10 mg/kg	TM410	<10			
Coronene	<200	TM410	<200			
EPH Surrogate % recovery**	µg/kg	TM415	90.6			
Mineral Oil >C10-C40	% <5	TM415	228			
	mg/kg					

(ALS)

Validated

				ICATE OF A				105
SDG: Location	n:	210715-1 Cvril Le M	07 Clie arguand HoOrd	nt Reference: 20 er Number: 20	33 33	Report Numb Superseded Re	oer: 607 port: 606	105 950
VOC MS (S)								
Results Legend # ISO17025 accredited.	Cus	tomer Sample Ref.	BH2 BH2 ES2					
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.65 - 0.70					
tot.unfilt Total / unfiltered sample. Subcontracted - refer to subcontract	tor report for	Sample Type Date Sampled	08/07/2021					
accreditation status. ** % recovery of the surrogate standar		Sampled Time Date Received	15/07/2021 210715-107					
efficiency of the method. The results compounds within samples aren't co the recovery	prrected for	SDG Ref Lab Sample No.(s)	24638277					
(F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)		AGS Reference						
Component Dibromofluoromethane**	LOD/Units	Method TM116	111					
	%							
Toluene-d8**	%	TM116	98.9					
4-Bromofluorobenzene**	%	TM116	91.4					
Methyl Tertiary Butyl Ether	<10 µg/kg	TM116	<100 M					
Benzene	<9 µg/kg	TM116	<90 M					
Toluene	<7 µg/kg	TM116	<70 M					
Ethylbenzene	<4 µg/kg	TM116	<40 M					
p/m-Xylene	<10 µg/kg	TM116	<100 #					
o-Xylene	<10 µg/kg	TM116						
Sum of BTEX	<40 µg/kg	TM116	<400					
	Pana							

		Validated					
SDG: Location:	210715-107 Cyril Le Marqua	Client Ref and HoOrder Nu	eport Number: perseded Repor	60710 t: 60695			
	CEN 10	:1 SINGLE	STAGE LEA	ACHATE TES	БТ		
CEN ANALYTICAL RES	OLTS				F	REF : BS E	N 12457/2
Client Reference			Site Location		Cyril I	_e Marquand	House
Mass Sample taken (kg)	0.117		Natural Moist	ure Content (%			
Mass of dry sample (kg)	0.090		Dry Matter Co	•	77		
Particle Size <4mm	>95%			(//)			
Case					l andfil	I Waste Acce	entance
SDG	210715 107					Criteria Limit	
Lab Sample Number(s)	24638277				-		-
Sampled Date	08 Jul 2021					Stable	
•					Inert Waste	Non-reactive Hazardous Waste	Hazardous
Customer Sample Ref. Depth (m)	BH2 ES2 0 65 0 70				Landfill	in Non-	Waste Landfill
· · ·						Hazardous Landfill	
Solid Waste Analysis	Result						
Total Organic Carbon (%)	<0.2				3	5	6
Loss on Ignition (%) Sum of BTEX (mg/kg)	<u>38.8</u> <0.4				- 6		- 10
Sum of 7 PCBs (mg/kg)	<0.021				1	-	-
Mineral Oil (mg/kg)	228				500	-	-
PAH Sum of 17 (mg/kg)	<10				100	-	-
pH (pH Units) ANC to pH 6 (mol/kg)	8.65 0.18				-	>6	-
ANC to pH 4 (mol/kg)	0.678	-			-	-	-
Eluate Analysis	C2 Conc ⁿ in 1	0:1 eluate (mg/l)	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg				
Liudie Andrysis	Result	Limit of Detection	Result	Limit of Detection	using BS	EN 12457-3 at L	/S 10 I/kg
Arsenic	0.0151	<0.0005	0.151	<0.005	0.5	2	25
Barium	0.00767	<0.0002	0.0767	<0.002	20	100	300
Cadmium	<0.0008	<0.00008	<0.0008	<0.0008	0 04	1	5
Chromium	0 001	0 001	<0 01	0 01	0.5	10	70
Copper	0.00255	<0.0003	0.0255	<0.003	2	50	100
Mercury Dissolved (CVAF)	0.000012	<0.00001	0.00012	<0.0001	0.01	0.2	2
Molybdenum	0.0188	<0.003	0.188	<0.03	0.5	10	30
Nickel	0.00136	<0.0004	0.0136	< 0.004	04	10	40
Lead	0 00105	0 0002	0 0105	0 002	0.5	10	50
Antimony	0.00489	< 0.001	0.0489	<0.01	0.06	0.7	5
Selenium	< 0.001	< 0.001	< 0.01	<0.01	0.1	0.5	7
Zinc Chloride	0.00147	<0.001	0.0147	<0.01	4 800	50	200
Fluoride	2.5	<2 0 5	25 5	<20 5	10	15000 150	25000 500
Sulphate (soluble)	24.8	<2	5 248	5 <20	1000	20000	5000
Total Dissolved Solids	114	<5	1140	<50	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	4.35	<3	43.5	<30	500	800	1000

Leach Test Information

Date Prepared	17-Jul-2021
pH (pH Units)	8.38
Conductivity (µS/cm)	134.00
Temperature (°C)	21.90
Volume Leachant (Litres)	0.873

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALS Environmental cannot be held responsible for any discrepancies with current legislation

SDG:

Location:

210715-107

Client Reference: 2033 Cyril Le Marguand HoOrder Number:

Report Number: Superseded Report:

607105 606950

Validated

Table of Results - Appendix

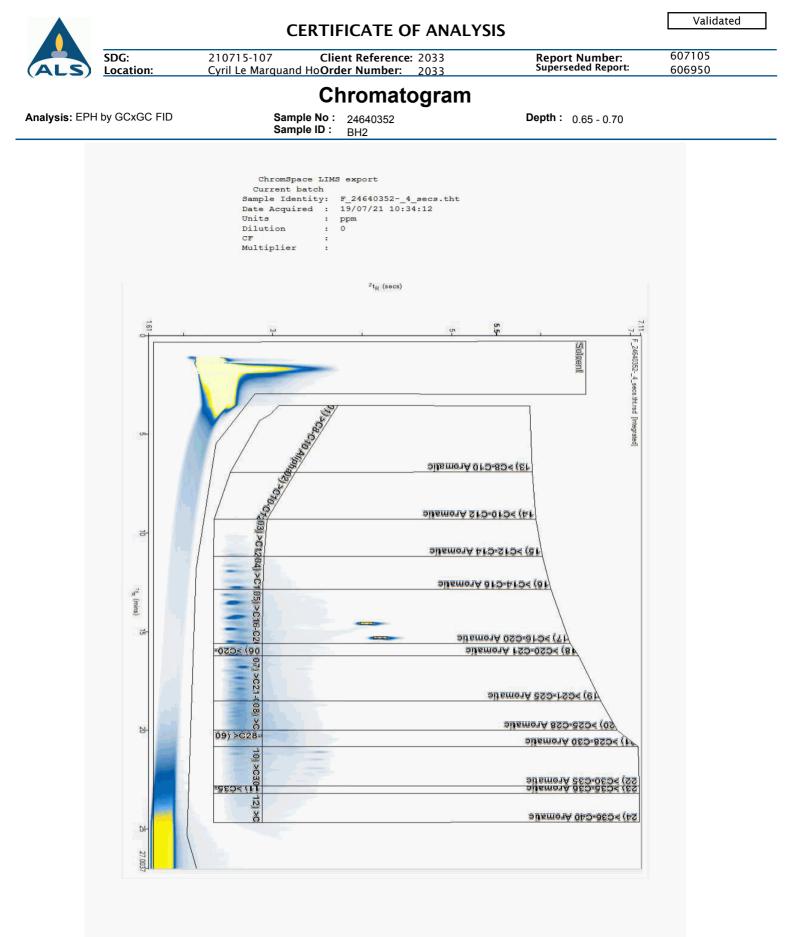
2033

CERTIFICATE OF ANALYSIS

Method No	Reference	Description
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material
PM115		Leaching Procedure for CEN One Stage Leach Test 2:1 & 10:1 1 Step
TM018	BS 1377: Part 3 1990	Determination of Loss on Ignition
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS
TM123	BS 2690: Part 121:1981	The Determination of Total Dissolved Solids in Water
TM132	In - house Method	ELTRA CS800 Operators Guide
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils
TM182	CEN/TC 202 - WI 292046-chacterization of waste-leaching Behaviour Tests- Acid and Base Neutralization Capacity Test	Determination of Acid Neutralisation Capacity (ANC) Using Autotitration in Soils
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM218	Shaker extraction - EPA method 3546.	The determination of PAH in soil samples by GC-MS
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC
TM410	Shaker extraction-In house coronene method	Determination of Coronene in soils by GCMS
TM415	Analysis of Petroleum Hydrocarbons in Environmental Media.	Determination of Extractable Petroleum Hydrocarbons in Soils by GCxGC-FID

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).



210715-107Client Reference: 2033Cyril Le Marguand HoOrder Number: 2033

Report Number: Superseded Report: 607105 606950

Lab Sample No(s)	24638277
Cu tomer Sample Ref	BH2
AGS Ref.	ES2
Depth	0.65 - 0.70
Туре	Soil/Solid (S)
ANC at pH4 and ANC at pH 6	19-Jul-2021
Anions by Kone (w)	21-Jul-2021
CEN 10:1 Leachate (1 Stage)	17-Jul-2021
CEN Readings	20-Jul 2021
Coronene	18-Jul-2021
Dissolved Metals by ICP-MS	20-Jul-2021
Dissolved Organic/Inorganic Carbon	25-Jul-2021
EPH by GCxGC-FID	20-Jul-2021
Fluoride	20-Jul-2021
Loss on Ignition in soils	20-Jul-2021
Mercury Dissolved	21-Jul-2021
Moisture at 105C	17-Jul-2021
PAH 16 & 17 Calc	19-Jul-2021
PAH by GCMS	19-Jul-2021
PCBs by GCMS	19-Jul-2021
pH	16-Jul-2021
Phenols by HPLC (W)	21-Jul-2021
Sample description	15-Jul-2021
Total Dissolved Solids	20-Jul-2021
Total Organic Carbon	20-Jul-2021
VOC MS (S)	19-Jul-2021

Test Completion Dates

	ALS Enviro	onmental, Land		QF.7.5.1 Data Amendments Form (Issue No. 4 Date: 03/03/2020 Issued and Authorised by Quality Manager			
SDG	Sample Event	Sample ID	Date Amended	Amendment Reason	Previous Reference	New Reference	Supersedes Report
210715-107	24638277	BH2	26/07/2021	Sample ID Change	ES 1	ES 2	606950

SDG:	210715-107	Client Reference:	2033	Report Number:	607105
Location:	Cvril Le Marguand House	Order Number:	2033	Superseded Report:	606950
Locution.	Cyni Ee marquanu nouse	order Humber.	2033	Superseula Report	

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part hereof un il the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

6. NDP - No determination possible due to insufficient/unsuitable sample.

7. Results relate only to the items tested.

8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

9. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remedia ion fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

11. In certain circumstances the method detec ion limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

12. Mercury results quoted on soils will not include volatile mercury as he analysis is performed on a dried and crushed sample.

13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically iden ify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive iden ification, volatiles by GCMS should be utilised.

16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17. **Tentatively Identified Compounds (TICs)** are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjecte to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

18. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
§	Sampled on date not provided

19. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and he sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house me hod of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for iden ification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Aste stoe Type	Common Name
Chrysoile	White Asbestos
Amosite	BrownAsbestos
Cro ci dolite	Blue Asbestos
Fibrous Acinolite	-
Fibrous Anhophylite	-
Fibrous Tremolite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μm diameter, longer than 5 μm and wi h aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Standing Committee of Analysts, The Quantification of Asbestos in Soil (2017).

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700 Fax: (01244) 528701 email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

AMPLUS Ltd Unit 1 Thistle Grove St. Lawrence Jersey Jersey JE3 1NN

Attention: Matthew Warner

CERTIFICATE OF ANALYSIS

Date of report Generation:	26 July 2021
Customer:	AMPLUS Ltd
Sample Delivery Group (SDG):	210715-131
Your Reference:	2033
Location:	Cyril Le Mrquand House
Report No:	607097

This report has been revised and directly supersedes 606951 in its entirety.

We received 1 sample on Thursday July 15, 2021 and 1 of these samples were scheduled for analysis which was completed on Sunday July 25, 2021. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

<u>Sonia McWhan</u> Operations Manager

ALS Life Sciences Limited. ALS Life Sciences Limited registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden,
Deeside, CH5 3US. Registered in England and Wales No. 4057291.Version: 2.8Version Issued: 26/07/2021

	CERTIFICAT	E OF ANALYSIS		Validated					
SDG: Location	SDG:210715-131Client Reference:2033Report Number:Location:Cyril Le Mrguand HouOrder Number:2033Superseded Report:								
	Received Sa	mple Overview	V						
Lab Sample No(s) 24639387	Cu tomer Sample Ref	AGS Ref. ES2	Depth (m) 1.00	Sampled Date					

Only received samples which have had analysis scheduled will be shown on the following pages.

		C	ERTI	FIC	ATE OF ANALYSIS		Validated
SDG: Location:	21071 Cyril Le	5-131 Mrguand	Cli HouOr	ient F der N	eference: 2033 umber: 2033	Report Number: Superseded Report:	607097 606951
Results Legend					T		
X Test	Lab Sampl	e No(s)		2702207			
No Determination Possible							
	Custor Sample Re			5	2		
Sample Types - S - Soil/Solid UNS - Unspecified Solid CW - Ground Water SW - Surface Water LE - Land Leachate PL Prepared Leachate	AGS Refe	rence		Į	3		
PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US Untreated Sewage	Depth	(m)					
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas	Contai	ner	(ALEZTO) Tkg TUB with Handle	(ALE215) 250g Amber Jar			
OTH - Other	Sample	Туре	s	s r			
ANC at pH4 and ANC at pH 6	All	NDPs: 0 Tests: 1)	K			
Anions by Kone (w)	All	NDPs: 0 Tests: 1	X				
Asbestos ID in Solid Samples	All	NDPs: 0 Tests: 1	x				
CEN Readings	All	NDPs: 0 Tests: 1	x				
Coronene	All	NDPs: 0 Tests: 1	, ,	<mark>< </mark>			
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 1	x				
Dissolved Organic/Inorganic Carbon	All	NDPs: 0 Tests: 1	x				
EPH by GCxGC-FID	All	NDPs: 0 Tests: 1)	K			
Fluoride	All	NDPs: 0 Tests: 1	x				
Loss on Ignition in soils	All	NDPs: 0 Tests: 1	,	K			
Mercury Dissolved	All	NDPs: 0 Tests: 1	X				
PAH 16 & 17 Calc	All	NDPs: 0 Tests: 1)	(
PAH by GCMS	All	NDPs: 0 Tests: 1)	K			
PCBs by GCMS	All	NDPs: 0 Tests: 1	,	K			
рН	All	NDPs 0 Tests: 1	,	ĸ			

		C	ERT	FIF	ICA	TE OF ANALYSIS		Validated
SDG: Location:	210715 Cyril Le	-131 Mrquand				ference: 2033 Imber: 2033	Report Number: Superseded Report:	607097 606951
Results Legend X Test N No Determination Possible	Lab Sample	e No(s)			24639387			
Sample Types -	Custon Sample Ref				BH1			
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refe	ES2						
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m)				1.00			
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL Sludge	Contair	ner	1 kg TUB with Handle	250g Amber Jar (ALE210)	60g VOC (ALE215)			
G - Gas OTH - Other	Sample T	уре	s	s	s			
Phenols by HPLC (W)	All	NDPs: 0 Tests: 1	x					
Sample description	All	NDPs: 0 Tests: 1		x				
Total Dissolved Solids	All	NDPs: 0 Tests: 1	x					
Total Organic Carbon	All	NDPs: 0 Tests: 1		X	_			

VOC MS (S)

All

NDPs: 0 Tests: 1

Х

Grain Sizes

CERTIFICATE OF ANALYSIS

Validated

607097

606951

210715-131 Client Reference: 2033

Cyril Le Mrguand HouOrder Number: 2033 Report Number: Superseded Report:

Sample Descriptions

orani																	
very fi	ne <0.	063mm	fine	0.063n	nm - 0.1mm	me	dium	0.1mm	- 2mm	coar	rse	2mm - 1	0mm	very co	arse	>10mn	1
Lab Sa	mple No(s)	Custom	er Sample I	Ref.	Depth (m)		Colo	our	Descrip	tion	Inc	lusions	Inclu	sions 2	I		
24	639387		BH1		1 00		Dark E	Brown	Sandy L	oam	(Stones	В	rick	Ī		

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

ALS

Validated

SDG: Location	. .	210715-1 Cvril Le M	31 Clie	nt Reference: 20 er Number: 20	33	Report Num Superseded Re	ber: 607 eport: 606	097
	•	CHILE M					- 000	
Results Legend # ISO17025 accredited. M mCERTS accredited.	Cus	stomer Sample Ref.	BH1 BH1 ES2 1.00					
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. Subcontracted - refer to subcontract accreditation status. * % recovery of the surrogate standard		Depth (m) Sample Type Date Sampled Sampled Time	Soil/Solid (S) 13/07/2021 00:00 15/07/2021					
efficiency of the method. The results compounds within samples aren't co the recovery (F) Trigger breach confirmed	of individual rrected for	Date Received SDG Ref Lab Sample No.(s)	210715-131 24639387 ES2					
1-4+5@ Sample deviation (see appendix) Component	LOD/Units	AGS Reference Method						
Moisture Content Ratio (% of as		PM024	5.5					
received sample) Loss on ignition	% <0.7 %	TM018	5.71 M					
Organic Carbon, Total	<0.2 %	TM132	0.582 M					
рН	1 pH Units	TM133	11.9 M					
PCB congener 28	<3 µg/kg	TM168 TM168	<15 M <15					
PCB congener 52 PCB congener 101	<3 µg/kg <3	TM168	<15 M <15					
PCB congener 101 PCB congener 118	<3 µg/kg <3	TM168	<15 M <15					
PCB congener 138	µg/kg <3	TM168	<10 <15					
PCB congener 153	-ς μg/kg <3	TM168	<15 M <15					
PCB congener 180	µg/kg <3	TM168	<10 M					
Sum of detected PCB 7	µg/kg <21	TM168	M					
Congeners ANC @ pH 4	µg/kg <0.03	TM182	0.106					
ANC @ pH 6	mol/kg <0.03	TM182	0.0821					
PAH Total 17 (inc Coronene) Moisture Corrected	mol/kg <10	TM410	<10					
Coronene	mg/kg <200 µg/kg	TM410	<200					
EPH Surrogate % recovery**	%	TM415	102					
Mineral Oil >C10-C40	<5 mg/kg	TM415	8.86					

			CERTIF	ICATE OF A	NALYSIS			Validated
SDG:		210715-1	31 Clier	nt Reference: 20		Report Num Superseded Re		7097
(ALS) Location	n:	Cyril Le M	rguand HouOrde	er Number: 20	33	Superseded R	eport: 606	951
VOC MS (S) Results Legend	Cus	tomer Sample Ref.	BH1					
BO17025 accredited. M mCERT8 accredited. aq Aqueous / settled sample. diss.fit Dissolved / filtered sample. tournfit Tool / unfiltered sample. Subcontracted - refer to subcontract accreditation satus. % recovery of the surrogate standan efficiency of the surrogate standan compounds within samples aren't co	d to check the of individual prrected for	Depth (m) Sample Type Date Sampled Sampled Time Date Received SDG Ref	BH1 ES2 1.00					
the recovery (F) Trigger breach confirmed 1-4+\$@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	EðZ					
Component Dibromofluoromethane**	LOD/Units	Method TM116	110					
Dipromonuorometriane	%	INITO	110					
Toluene-d8**	%	TM116	89.8					
4-Bromofluorobenzene**	%	TM116	73.4					
Methyl Tertiary Butyl Ether	<10 µg/kg	TM116	<10 M					
Benzene	<9 µg/kg	TM116	<9 M					
Toluene	<7 µg/kg	TM116	<7 M					
Ethylbenzene	< <4 μg/kg	TM116	<4 M					
p/m-Xylene	 <10 μg/kg	TM116	<10 #					
o-Xylene	<10	TM116	<10					
Sum of BTEX	μg/kg <40	TM116	M <40					
	µg/kg							

Validated

210715-131Client Reference:2033Cyril Le Mrquand HouOrder Number:2033

ence: 2033

Report Number:607097Superseded Report:606951

Asbestos Identification - Solid Samples

		Resul	is Legend										
1		ISO17025 a mCERTS a											
	•	Subcontra	cted test.	Date of Analysis	Analysed By	Comments	Amosite (Brown)		Crocidolite	Fibrous	Fibrous		Non-Asbestos
	(F)	Trigger bro	each confirmed				Asbestos	(White)	(Blue) Asbestos	Actinolite	Anthophyllite	Tremolite	Fibre
_		Sample de	viation (see appendix)					Asbestos					
	Cust. Sa	mple	BH1ES2	21.07.21	Emily	-	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
	Ref	F.	1 00		Anderton		(#)	(#)	(#)	(#)	(#)	(#)	
	Depth	(m)	SOLID		/ under com		(")	(")	(")	(")	(")	(")	
	Sample	Type 1	13/07/2021 00:00:00										
	Date Sa	mpled 1	15/07/2021 12:00:00										
	Date Rec	eieved	210715-131										
	SDO	G	24639387										
	Original S	Sample	TM048										
	Method N	lumber										1	
											1	1	
												1 1	

CEN ANALYTICAL RES			erence: 2033		eport Number		
		nd Hou Order Nur			perseded Repo	rt: 60695	51
	CEN 10	1 SINGLE	STAGE LEA	CHATE TES			
SEN ANALT TICAL RES	ULTS				I	REF : BS E	N 12457
Client Reference		:	Site Location		Cyril	Le Mrquand F	louse
Mass Sample taken (kg)	0.101		Natural Moist	ure Content (%	6) 12.3		
Mass of dry sample (kg)	0.090		Dry Matter Co	ontent (%)	89.1		
Particle Size <4mm	>95%		-				
Case					Landfi	II Waste Acce	eptance
SDG	210715 131					Criteria Limit	
_ab Sample Number(s)	24639387						
Sampled Date	13 Jul 2021					Stable	
•					Inert Waste	Non-reactive Hazardous Waste	Hazardous
Customer Sample Ref.	BH1 ES2				Landfill	Hazardous Waste in Non-	Waste Landf
Depth (m)	1 00					Hazardous Landfill	
Solid Waste Analysis	Result						
otal Organic Carbon (%)	0.582				3	5	6
loss on Ignition (%)	5.71				-	-	10
Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg)	<0.04 <0.105				6	-	-
/ineral Oil (mg/kg)	8.86				500	-	-
PAH Sum of 17 (mg/kg)	<10				100	-	-
oH (pH Units)	11.9				-	>6	-
ANC to pH 6 (mol/kg)	0.0821				-	-	-
ANC to pH 4 (mol/kg)	0.108				-		
Eluate Analysis	C ₂ Conc ⁿ in 1	0:1 eluate (mg/l)		ⁿ leached (mg/kg)		s for compliance l EN 12457-3 at L	
- ·	Result	Limit of Detection		Limit of Detection			<u></u>
Arsenic	0.00271	< 0.0005	0.0271	< 0.005	0.5	2	25
Barium	0.0114	< 0.0002	0.114	< 0.002	20	100	300
	<0.00008	<0.00008	<0.0008	<0.0008	0 04	1	5
Chromium	0 0114	0 001	0 114	0 01	0.5	10	70
Copper Mercury Dissolved (CVAF)	0.031	< 0.0003	0.31	< 0.003	2	50	100
VIEICULV DISSOIVED (CVAE)	0.0000311 0.00332	<0.00001 <0.003	0.000311 0.0332	<0.0001 <0.03	0.01	0.2	2
• • •	0.00332			<0.003	0.5	10	30 40
Aolybdenum	0.00106			<u>~0.004</u>	0.4		40
Molybdenum Nickel	0.00106	< 0.0004	0.0106		04		
Nolybdenum Nickel Lead	0 0002	0 0002	0 002	0 002	0.5	10	50
Nolybdenum Nickel Lead Antimony	0 0002 <0.001	0 0002 <0.001	0 002 <0.01	0 002 <0.01	0.5 0.06	10 0.7	50 5
Molybdenum Nickel Lead Antimony Selenium	0 0002 <0.001 <0.001	0 0002 <0.001 <0.001	0 002 <0.01 <0.01	0 002 <0.01 <0.01	0.5 0.06 0.1	10 0.7 0.5	50 5 7
Molybdenum Nickel Lead Antimony Selenium Zinc	0 0002 <0.001 <0.001 <0.001	0 0002 <0.001 <0.001 <0.001	0 002 <0.01 <0.01 <0.01	0 002 <0.01 <0.01 <0.01	0.5 0.06 0.1 4	10 0.7 0.5 50	50 5 7 200
Molybdenum Nickel Lead Antimony Selenium Zinc Chloride	0 0002 <0.001 <0.001 <0.001 <2	0 0002 <0.001 <0.001 <0.001 <2	0 002 <0.01 <0.01 <0.01 <20	0 002 <0.01 <0.01 <0.01 <20	0.5 0.06 0.1	10 0.7 0.5 50 15000	50 5 7
Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride	0 0002 <0.001 <0.001 <0.001 <2 0 5	0 0002 <0.001 <0.001 <0.001 <2 0 5	0 002 <0.01 <0.01 <0.01 <20 5	0 002 <0.01 <0.01 <0.01 <20 5	0.5 0.06 0.1 4 800 10	10 0.7 0.5 50 15000 150	50 5 7 200 25000 500
Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate (soluble)	0 0002 <0.001 <0.001 <0.001 <0.001 <2 0 5 18.2	0 0002 <0.001 <0.001 <0.001 <2 0 5 <2	0 002 <0.01 <0.01 <0.01 <20 5 182	0 002 <0.01 <0.01 <0.01 <20	0.5 0.06 0.1 4 800	10 0.7 0.5 50 15000	50 5 7 200 25000
Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate (soluble) Total Dissolved Solids Total Monohydric Phenols (W)	0 0002 <0.001 <0.001 <0.001 <2 0 5	0 0002 <0.001 <0.001 <0.001 <2 0 5	0 002 <0.01 <0.01 <0.01 <20 5	0 002 <0.01 <0.01 <0.01 <20 5 <20	0.5 0.06 0.1 4 800 10 1000	10 0.7 0.5 50 15000 150 20000	50 5 7 200 25000 500 50000

Date Prepared	10 1 1 0001
	16-Jul-2021
pH (pH Units)	11.51
Conductivity (µS/cm)	946.00
Temperature (°C)	21.90
Volume Leachant (Litres)	0.889

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALS Environmental cannot be held responsible for any discrepancies with current legislation

SDG:

Location:

CERTIFICATE OF ANALYSIS 210715-131

Client Reference: 2033 Cyril Le Mrquand HouOrder Number: 2033

Report Number: Superseded Report:

607097 606951

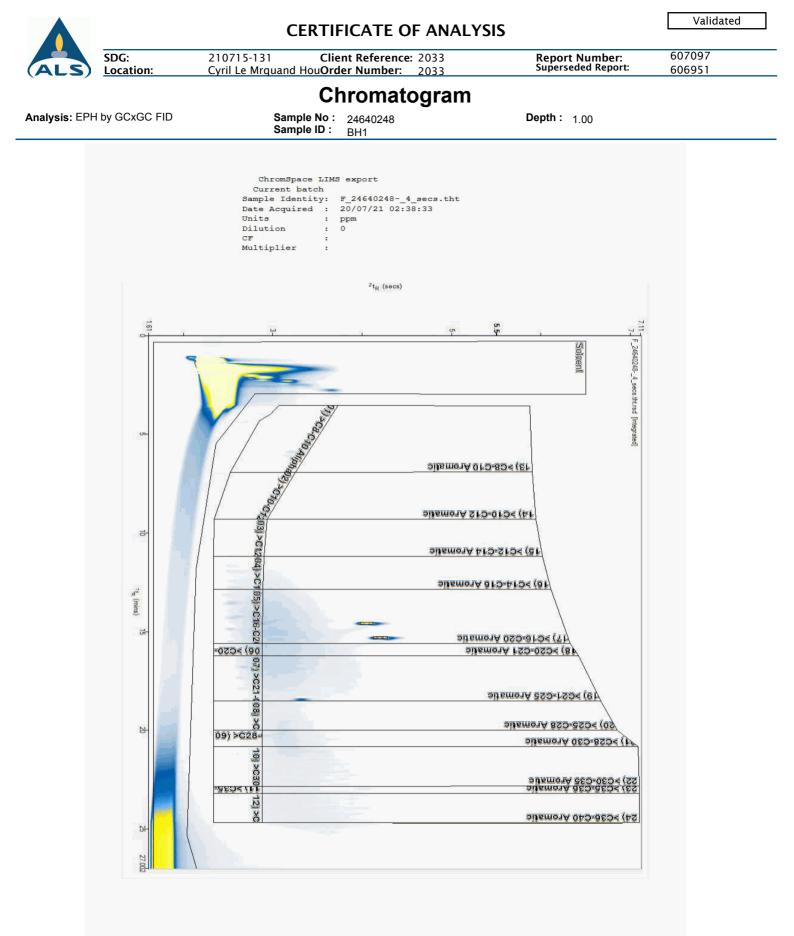
Validated

Table of Results - Appendix

lethod No	Reference	Description
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material
PM115		Leaching Procedure for CEN One Stage Leach Test 2:1 & 10:1 1 Step
TM018	BS 1377: Part 3 1990	Determination of Loss on Ignition
TM048	HSG 248, Asbestos: The analysts' guide for sampling, analysis and clearance procedures	Identification of Asbestos in Bulk Material
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS
TM123	BS 2690: Part 121:1981	The Determination of Total Dissolved Solids in Water
TM132	In - house Method	ELTRA CS800 Operators Guide
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils
TM182	CEN/TC 292 - WI 292046-chacterization of waste-leaching Behaviour Tests- Acid and Base Neutralization Capacity Test	Determination of Acid Neutralisation Capacity (ANC) Using Autotitration in Soils
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM218	Shaker extraction - EPA method 3546.	The determination of PAH in soil samples by GC-MS
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC
TM410	Shaker extraction-In house coronene method	Determination of Coronene in soils by GCMS
TM415	Analysis of Petroleum Hydrocarbons in Environmental Media.	Determination of Extractable Petroleum Hydrocarbons in Soils by GCxGC-FID

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).


Validated

210715-131Client Reference:2033Cyril Le Mrguand HouOrder Number:2033

Report Number: Superseded Report: 607097 606951

Anions by Kone (w) 21-Jul-2021 Asbestos D in Solid Samples 21-Jul-2021 Asbestos D in Solid Samples 21-Jul-2021 CEN 10:1 Leachate (1 Stage) 16-Jul 2021 CEN Readings 20-Jul-2021 Dissolved Metals by ICP-MS 20-Jul-2021 Dissolved Organic/Inorganic Carbon 25-Jul-2021 EPH by GCxGC-FID 20-Jul-2021 Fluoride 19-Jul-2021 Loss on Ignition in soils 20-Jul-2021 Moisture at 105C 16-Jul-2021 PAH 16 & 17 Calc 19-Jul-2021 PAH by GCMS 21-Jul-2021 PAH by GCMS 21-Jul-2021 PAH by GCMS 21-Jul-2021 PAH by GCMS 19-Jul-2021 PAH by GCMS 21-Jul-2021 PAH by GCMS 20-Jul-2021 PAH by GCMS 20-Jul-2021 PAH 19-Jul-2021 PAH 19-Jul-2021 PAH 20-Jul-2021 Sample description 15-Jul-2021 Fotal Dissolved Solids 20-Jul-2021	Lab Sampl	e No(s)	24639387
Depth Type1.00Soil/Solid (S)ANC at pH4 and ANC at pH 6Anions by Kone (w)Anions by Kone (w)Asbestos D in Solid SamplesCEN 10:1 Leachate (1 Stage)CEN 10:1 Leachate (1 Stage)CEN ReadingsCoronene16-Jul-2021Dissolved Metals by ICP-MSDissolved Metals by ICP-MSDissolved Organic/Inorganic Carbon25-Jul-2021PH by GCxGC-FIDFluoride19-Jul-2021Loss on Ignition in soilsWercury DissolvedWoisture at 105CPAH by GCMSPAH by GCMS21-Jul-2021PCBs by GCMS21-Jul-2021PCBs by GCMS21-Jul-2021Phenols by HPLC (W)Sample descriptionTotal Dissolved Solids20-Jul-2021Fotal Organic Carbon20-Jul-2021Solid Solids20-Jul-2021Sample description20-Jul-2021Starpel descriptionTotal Dissolved Solids20-Jul-2021Potal Organic Carbon20-Jul-2021Starpel descriptionStarpel description	Cu tomer Sam	ole Ref	BH1
TypeSoil/Solid (S)ANC at pH4 and ANC at pH 619-Jul-2021Anions by Kone (w)21-Jul-2021Asbestos D in Solid Samples21-Jul-2021Dissolved Samples21-Jul-2021CEN 10:1 Leachate (1 Stage)16-Jul 2021CEN Readings20-Jul-2021Dissolved Metals by ICP-MS20-Jul-2021Dissolved Metals by ICP-MS20-Jul-2021Dissolved Organic/Inorganic Carbon25-Jul-2021EPH by GCxGC-FID20-Jul-2021Fluoride19-Jul-2021Mercury Dissolved20-Jul-2021Moisture at 105C16-Jul-2021PAH 16 & 17 Calc19-Jul-2021PAH by GCMS21-Jul-2021PCBs by GCMS19-Jul-2021Phenols by HPLC (W)20-Jul-2021Sample description15-Jul-2021Total Dissolved Solids20-Jul-2021Total Organic Carbon20-Jul-2021	A	GS Ref.	ES2
ANC at pH4 and ANC at pH 6 19-Jul-2021 Anions by Kone (w) 21-Jul-2021 Asbestos D in Solid Samples 21-Jul-2021 Asbestos D in Solid Samples 21-Jul-2021 CEN 10:1 Leachate (1 Stage) 16-Jul 2021 CEN Readings 20-Jul-2021 Dissolved Metals by ICP-MS 20-Jul-2021 Dissolved Organic/Inorganic Carbon 25-Jul-2021 PH by GCxGC-FID 20-Jul-2021 Fluoride 19-Jul-2021 Mercury Dissolved 20-Jul-2021 Mercury Dissolved 20-Jul-2021 Moisture at 105C 16-Jul-2021 PAH 16 & 17 Calc 19-Jul-2021 PAH by GCMS 21-Jul-2021 PCBs by GCMS 19-Jul-2021 Phenols by HPLC (W) 20-Jul-2021 Sample description 15-Jul-2021 Fotal Dissolved Solids 20-Jul-2021		Depth	1.00
Anions by Kone (w) 21-Jul-2021 Anions by Kone (w) 21-Jul-2021 Asbestos D in Solid Samples 21-Jul-2021 CEN 10:1 Leachate (1 Stage) 16-Jul 2021 CEN Readings 20-Jul-2021 Coronene 16-Jul-2021 Dissolved Metals by ICP-MS 20-Jul-2021 Dissolved Organic/Inorganic Carbon 25-Jul-2021 PH by GCxGC-FID 20-Jul-2021 Fluoride 19-Jul-2021 Loss on Ignition in soils 20-Jul-2021 Mercury Dissolved 20-Jul-2021 Moisture at 105C 16-Jul-2021 PAH 16 & 17 Calc 19-Jul-2021 PAH by GCMS 21-Jul-2021 PCBs by GCMS 19-Jul-2021 Phenols by HPLC (W) 20-Jul-2021 Sample description 15-Jul-2021 Fotal Dissolved Solids 20-Jul-2021		Туре	Soil/Solid (S)
Asbestos D in Solid Samples 21-Jul-2021 CEN 10:1 Leachale (1 Stage) 16-Jul 2021 CEN Readings 20-Jul-2021 Coronene 16-Jul-2021 Dissolved Metals by ICP-MS 20-Jul-2021 Dissolved Organic/Inorganic Carbon 25-Jul-2021 PH by GCxGC-FID 20-Jul-2021 Fluoride 19-Jul-2021 Corone on Ignition in soils 20-Jul-2021 Mercury Dissolved 20-Jul-2021 Moisture at 105C 16-Jul-2021 PAH 16 & 17 Calc 19-Jul-2021 PAH by GCMS 21-Jul-2021 PAH by GCMS 19-Jul-2021 Phenols by HPLC (W) 20-Jul-2021 Sample description 15-Jul-2021 Fotal Dissolved Solids 20-Jul-2021 Fotal Organic Carbon 20-Jul-202	ANC at pH4 and ANC at pH 6		19-Jul-2021
DEN 10:1 Leachate (1 Stage) 16-Jul 2021 CEN 10:1 Leachate (1 Stage) 16-Jul-2021 CEN Readings 20-Jul-2021 Dissolved Metals by ICP-MS 20-Jul-2021 Dissolved Organic/Inorganic Carbon 25-Jul-2021 EPH by GCxGC-FID 20-Jul-2021 Fluoride 19-Jul-2021 Loss on Ignition in soils 20-Jul-2021 Mercury Dissolved 20-Jul-2021 Moisture at 105C 16-Jul-2021 PAH 16 & 17 Calc 19-Jul-2021 PCBs by GCMS 21-Jul-2021 PCBs by GCMS 19-Jul-2021 Phenols by HPLC (W) 20-Jul-2021 Sample description 15-Jul-2021 Fotal Dissolved Solids 20-Jul-2021	Anions by Kone (w)		21-Jul-2021
CEN Readings 20-Jul-2021 Coronene 16-Jul-2021 Dissolved Metals by ICP-MS 20-Jul-2021 Dissolved Organic/Inorganic Carbon 25-Jul-2021 EPH by GCxGC-FID 20-Jul-2021 Fluoride 19-Jul-2021 Loss on Ignition in soils 20-Jul-2021 Mercury Dissolved 20-Jul-2021 Moisture at 105C 16-Jul-2021 PAH 16 & 17 Calc 19-Jul-2021 PCBs by GCMS 21-Jul-2021 PCBs by GCMS 19-Jul-2021 Phenols by HPLC (W) 20-Jul-2021 Sample description 15-Jul-2021 Fotal Dissolved Solids 20-Jul-2021	Asbestos D in Solid Samples		21-Jul-2021
Coronene 16-Jul-2021 Dissolved Metals by ICP-MS 20-Jul-2021 Dissolved Organic/Inorganic Carbon 25-Jul-2021 EPH by GCxGC-FID 20-Jul-2021 Fluoride 19-Jul-2021 coss on Ignition in soils 20-Jul-2021 Mercury Dissolved 20-Jul-2021 Moisture at 105C 16-Jul-2021 PAH 16 & 17 Calc 19-Jul-2021 PAH by GCMS 21-Jul-2021 PCBs by GCMS 19-Jul-2021 Phenols by HPLC (W) 20-Jul-2021 Sample description 15-Jul-2021 Fotal Dissolved Solids 20-Jul-2021	CEN 10:1 Leachate (1 Stage)		16-Jul 2021
Dissolved Metals by ICP-MS 20-Jul-2021 Dissolved Organic/Inorganic Carbon 25-Jul-2021 EPH by GCxGC-FID 20-Jul-2021 Fluoride 19-Jul-2021 Loss on Ignition in soils 20-Jul-2021 Mercury Dissolved 20-Jul-2021 Moisture at 105C 16-Jul-2021 PAH 16 & 17 Calc 19-Jul-2021 PCBs by GCMS 21-Jul-2021 PCBs by GCMS 19-Jul-2021 Phenols by HPLC (W) 20-Jul-2021 Sample description 15-Jul-2021 Total Dissolved Solids 20-Jul-2021	CEN Readings		20-Jul-2021
Dissolved Organic/Inorganic Carbon 25-Jul-2021 EPH by GCxGC-FID 20-Jul-2021 Fluoride 19-Jul-2021 Loss on Ignition in soils 20-Jul-2021 Mercury Dissolved 20-Jul-2021 Moisture at 105C 16-Jul-2021 PAH 16 & 17 Calc 19-Jul-2021 PCBs by GCMS 21-Jul-2021 PCBs by GCMS 19-Jul-2021 PH 19-Jul-2021 Sample description 15-Jul-2021 Total Dissolved Solids 20-Jul-2021	Coronene		16-Jul-2021
EPH by GCxGC-FID 20-Jul-2021 Fluoride 19-Jul-2021 Loss on Ignition in soils 20-Jul-2021 Mercury Dissolved 20-Jul-2021 Moisture at 105C 16-Jul-2021 PAH 16 & 17 Calc 19-Jul-2021 PAH by GCMS 21-Jul-2021 PCBs by GCMS 19-Jul-2021 PCBs by GCMS 19-Jul-2021 Phenols by HPLC (W) 20-Jul-2021 Sample description 15-Jul-2021 Total Dissolved Solids 20-Jul-2021	Dissolved Metals by ICP-MS		20-Jul-2021
Interpretation Interpretation Fluoride 19-Jul-2021 Jussion Ignition in soils 20-Jul-2021 Mercury Dissolved 20-Jul-2021 Moisture at 105C 16-Jul-2021 PAH 16 & 17 Calc 19-Jul-2021 PAH by GCMS 21-Jul-2021 PCBs by GCMS 19-Jul-2021 PHenols by HPLC (W) 20-Jul-2021 Sample description 15-Jul-2021 Fotal Dissolved Solids 20-Jul-2021	Dissolved Organic/Inorganic Carbon		25-Jul-2021
Institution Institution Loss on Ignition in soils 20-Jul-2021 Mercury Dissolved 20-Jul-2021 Woisture at 105C 16-Jul-2021 PAH 16 & 17 Calc 19-Jul-2021 PAH by GCMS 21-Jul-2021 PCBs by GCMS 19-Jul-2021 PH holds by HPLC (W) 20-Jul-2021 Sample description 15-Jul-2021 Total Dissolved Solids 20-Jul-2021 For all Organic Carbon 20-Jul-2021	EPH by GCxGC-FID		20-Jul-2021
Mercury Dissolved 20-Jul-2021 Moisture at 105C 16-Jul-2021 PAH 16 & 17 Calc 19-Jul-2021 PAH by GCMS 21-Jul-2021 PCBs by GCMS 19-Jul-2021 PH holds by HPLC (W) 20-Jul-2021 Sample description 15-Jul-2021 Fotal Dissolved Solids 20-Jul-2021	Fluoride		19-Jul-2021
Moisture at 105C 16-Jul-2021 PAH 16 & 17 Calc 19-Jul-2021 PAH by GCMS 21-Jul-2021 PCBs by GCMS 19-Jul-2021 pH 19-Jul-2021 pH 19-Jul-2021 pH 19-Jul-2021 pH 19-Jul-2021 pSimple description 15-Jul-2021 Total Dissolved Solids 20-Jul-2021 Fotal Organic Carbon 20-Jul-2021	Loss on Ignition in soils		20-Jul-2021
AH 16 & 17 Calc 19-Jul-2021 PAH 16 & 17 Calc 19-Jul-2021 PAH by GCMS 21-Jul-2021 PCBs by GCMS 19-Jul-2021 pH 19-Jul-2021 pH 19-Jul-2021 pH 19-Jul-2021 pH 19-Jul-2021 pSample description 15-Jul-2021 Total Dissolved Solids 20-Jul-2021 Fotal Organic Carbon 20-Jul-2021	Mercury Dissolved		20-Jul-2021
AH by GCMS 21-Jul-2021 PAH by GCMS 21-Jul-2021 PCBs by GCMS 19-Jul-2021 pH 19-Jul-2021 pH 19-Jul-2021 Sample description 15-Jul-2021 Total Dissolved Solids 20-Jul-2021 Total Organic Carbon 20-Jul-2021	Moisture at 105C		16-Jul-2021
PCBs by GCMS 19-Jul-2021 pH 19-Jul-2021 pHenols by HPLC (W) 20-Jul-2021 Sample description 15-Jul-2021 Total Dissolved Solids 20-Jul-2021 Fotal Organic Carbon 20-Jul-2021	PAH 16 & 17 Calc		19-Jul-2021
H 19-Jul-2021 Phenols by HPLC (W) 20-Jul-2021 Sample description 15-Jul-2021 Total Dissolved Solids 20-Jul-2021 Fotal Organic Carbon 20-Jul-2021	PAH by GCMS		21-Jul-2021
Phenols by HPLC (W) 20-Jul-2021 Sample description 15-Jul-2021 Total Dissolved Solids 20-Jul-2021 Fotal Organic Carbon 20-Jul-2021	PCBs by GCMS		19-Jul-2021
Sample description 15-Jul-2021 Total Dissolved Solids 20-Jul-2021 Total Organic Carbon 20-Jul-2021	pH		19-Jul-2021
Total Dissolved Solids 20-Jul-2021 Total Organic Carbon 20-Jul-2021	Phenols by HPLC (W)		20-Jul-2021
Total Organic Carbon 20-Jul-2021	Sample description		15-Jul-2021
	Total Dissolved Solids		20-Jul-2021
/OC MS (S) 16-Jul-2021	Total Organic Carbon		20-Jul-2021
	VOC MS (S)		16-Jul-2021

Test Completion Dates

ALS Environmental, Land			Date: 03/03/2020 Issued and Authorised by Quality Manager			
Sample Event	Sample ID	Date Amended	Amendment Reason	Previous Reference	New Reference	Supersedes Report
24639387	BH1	26/07/2021	Sample ID Change	ES 1	ES 2	606951
						ļ
						[
	-					

SDG:	210715-131	Client Reference:	2033	Report Number:	607097
Location:	Cyril Le Mrquand House	Order Number:	2033	Superseded Report:	606951

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part hereof un il the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

6. NDP - No determination possible due to insufficient/unsuitable sample.

7. Results relate only to the items tested.

8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

9. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remedia ion fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

11. In certain circumstances the method detec ion limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

12. Mercury results quoted on soils will not include volatile mercury as he analysis is performed on a dried and crushed sample.

13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically iden ify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive iden ification, volatiles by GCMS should be utilised.

16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17. **Tentatively Identified Compounds (TICs)** are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjecte to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

18. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
ŝ	Sampled on date not provided

19. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and he sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house me hod of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for iden ification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stoe Type	Common Name		
Chrysoile	White Asbestos		
Amosite	BrownAsbestos		
Crocidolite	Blue Asbestos		
Fibrous Acinolite	-		
Ribio us Anhophyllite	-		
Fibrous Tremolite	-		

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μm diameter, longer than 5 μm and wi h aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Standing Committee of Analysts, The Quantification of Asbestos in Soil (2017).

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

APPENDIX 4

Notes of Site Investigation and Limitations

INVESTIGATION TECHNIQUES

INTRODUCTION

The following brief review of Ground Investigation techniques, generally used as part of most Site Investigations in the UK, summarises their methodology, advantages, and limitations. Detailed descriptions of the techniques are available and can be provided on request. This review should be read in conjunction with the accompanying General Notes.

TRIAL PITS

The trial pit is amongst the simplest yet effective means of identifying shallow ground conditions on a site. Its advantages include simplicity, speed. potential accuracy, and costeffectiveness. The trial pit is most formed using an excavator, which can typically determine ground conditions to some 4 metres below ground level. Hand excavation is often used to locate, expose, and detail existing foundations, features, or services. In general, it is difficult to extend pits significantly below the water table in predominantly granular soils, where flows can cause instability. Unless otherwise stated, the trial pits will not have been provided with temporary side support during their construction. Under such circumstances, ground conditions to some 1.20 metres can be inspected, subject to closelv stability assessment, but below this depth, entrance into the pit is not permitted in the absence of shoring and hence observations will have been made from ground surface and samples taken from the excavator bucket. Trends in strata type, level and thickness can be determined, shear surfaces identified and the behaviour of plant, excavation sides and excavated materials can be related to the construction process. They are particularly valuable in landslip investigations. Some types of insitu test can be undertaken in such pits and large disturbed or block samples obtained.

DRY CORE DRILLING

The dry core drilling technique of soft ground boring, typically at a diameter of 100mm, is a method of rotary boring vertical holes and generally allows data to be obtained in respect of strata conditions other than rock. A core barrel is drilled into the ground using s rotary boring rig. Soil which enters the barrel is regularly removed and either sampled for subsequent examination or test or laid in a core box. Steel casing will have been used to prevent collapse of the borehole sides where necessary. A degree of disturbance of soil is inevitable and the presence of very thin layers of different soils within a stratum may not be identified. Changes in strata type can only be detected on recognition of a change in soil samples at surface, after the interface has been passed. For the foregoing reasons, depth measurements should not be considered more accurate than 0.10 metre. In cohesive soils, cylindrical samples are retrieved by driving or pushing in 70mm nominal diameter tubes. In soft soils, piston sampling or vane testing may be undertaken. In granular soils and often in cohesive materials, insitu Standard Penetration Tests (SPT's) are performed. The SPT records the number of standard blows required to drive a 50mm diameter open or cone ended probe for 300mm after an initial 150mm penetration. A modified method of recording is used in more dense strata. Small, disturbed samples are obtained throughout. The technique can determine ground conditions to depths more than 30 metres under suitable circumstances and usually causes less

surface disturbance than trial pitting.

ROTARY DRILLING

Rotary Drilling to produce cores by rotating an annular diamond-impregnated tube or barrel into the ground is the technique most appropriate to the forming of site investigation boreholes through rock or other hard strata. It has the advantage of being able to be used vertically or at an angle. Core diameters of less than 100mm are most common for site investigation purposes. Core is sometimes retrieved in plastic lining tubes. A flushing fluid such as air, water or foam is used to cool the bit and carry cuttings to the surface. Examination of cores allows detailed rock description and generally enables angled discontinuity surfaces to be observed. However, vertical holes do not necessarily reveal the presence of vertical or near-vertical fissures or joint discontinuities. Where open hole rotary drilling is employed, descriptions of strata result from examination at surface of small particles ejected from the borehole in the flushing medium. In consequence, no indication of fissuring, bedding, consistency, or degree of weathering can be obtained. Small scale plant can be used for auger drilling to be limited depths where access is constrained. Depths more than 60 metres can be achieved under suitable circumstances using rotary techniques, with minimal surface disturbance.

WINDOW SAMPLING

This technique involves the driving of an openended tube into the ground and retrieval of the soil, which enters the tube. The term "window sample" arose from the original device, which had a "window" or slot cut into the side of the tube through which samples were taken. This has now been superseded using a thin-walled plastic liner within a sampler, which has a solid wall. Diameters range from 36 to 86mm. Such samples can be used for qualitative logging, selection of samples for classification and chemical analysis and for obtaining a rudimentary assessment of strength. Driving devices can be hand-held or machine mounted, and the drive tubes are typically in 1m lengths. The hole formed is not cased, however, and hence the success of this technique is limited when soils and groundwater conditions are such that the sides of the hole collapse on withdrawal of the sampler. Obstructions within the ground, the density of the material or its strength can also limit the depth and rate of penetration of this light-weight investigation technique. Nevertheless, it is a valuable tool where access is constrained such as within buildings or on embankments. Depths of up to 8m can be achieved in suitable circumstances but depths of 4m to 6m are more common.

DYNAMIC PROBING

This technique typically measures the number of blows of a standard weight falling over a standard height to advance a cone-ended rod over sequential standard distances (typically 100mm). Some devices measure the penetration of the probe per standard blow. It is essentially a profiling tool and is best used in conjunction with other investigation techniques where site-specific correlation can be used to delineate the distribution of soft or loose soils or the upper horizon of a dense or strong layer such as rock. Both machine-driven and handdriven equipment is available, the selection depending upon access restrictions and the depth of penetration required. It is particularly useful where access for larger equipment is not available, disturbance is to be minimised or where there are cost constraints. No samples are recovered, and some techniques leave a sacrificial cone head in the ground. As with other lightweight techniques, progress is limited in strong or dense soils. The results are presented both numerically and graphically. Depths of up to 10m are commonly achieved in suitable circumstances. The hand driven DCP probing device has been calibrated by the TRL to provide a profile of CBR values over a range of depths of up to 1.50m.

INSTRUMENTATION

The most common form of instrument used in site investigation is either the standpipe or else the standpipe piezometer, which can be installed in investigation holes. They are used to facilitate monitoring of groundwater levels and water sampling over a period following site work. Normally a standpipe would be formed using rigid plastic tubing which has been perforated or slotted over much of its length whilst a standpipe piezometer would have a filter tip which would be placed at a selected level and the hole sealed above and sometimes below to isolate the zone of interest. Groundwater levels are determined using an electronic "dip meter" to measure the depth to the water surface from ground level. Piezometers can also be used to measure permeability. They are simple and inexpensive instruments for long term monitoring, but response times can limit their use in tidal areas and access to the ground surface at each instrument is necessary. Remote reading sophisticated reauires more hvdraulic. electronic, or pneumatic equipment. Settlement can be monitored using surface or buried target plates whilst lateral movement over a range of depths is monitored using slip indicator or inclinometer equipment.

EXPLORATORY HOLE RECORDS

The data obtained by these techniques are generally presented on Trial Pit, Borehole, Drill hole or Window Sample Records. The descriptions of strata result from information gathered from many sources, which may include published geological data, preliminary field observations and descriptions, insitu test results, laboratory test results and specimen descriptions. A key to the symbols and abbreviations used accompanies the records. The descriptions on the exploratory hole records accommodate but may not necessarily be identical to those on any preliminary records or the laboratory summaries. The records show ground conditions at the exploratory hole locations. The degree to which they can be used to represent conditions between or beyond such holes, however, is a matter for geological interpretation rather than factual reporting and must the associated uncertainties be recognised.

GENERAL NOTES

1. The report is prepared for the exclusive use of the Client named in the document and copyright subsists with Amplus Ltd. Prior written permission must be obtained to reproduce all or part of the report. It is prepared on the understanding that its contents are only disclosed to parties directly involved in the current investigation, preparation, and development of the site.

2. Further copies may be obtained with the Client's written permission, from Amplus Ltd with whom the master copy of the document will be retained.

3. The report and/or opinion are prepared for the specific purpose stated in the document and in relation to the nature and extent of proposals made available to Amplus Ltd at that time. Reconsideration will be necessary should those details change. The recommendations should not be used for other schemes on or adjacent to the site without further reference to Amplus Ltd.

4. The assessment of the significance of the factual data, where called for, is provided to assist the Client and his Engineer and/or Advisers in the preparation of their designs.

5. The report is based on the ground conditions encountered in the exploratory holes together with the results of field and laboratory testing in the context of the proposed development. The data from any commissioned desk study and site reconnaissance are also drawn upon. There may be special conditions appertaining to the site, however, which are not revealed by the investigation, and which may not be considered in the report.

6. Methods of construction and/or design other than those proposed by the designers or referred to in the report may require consideration during the evolution of the proposals and further assessment of the geotechnical and any geoenvironmental data would be required to provide discussion and evaluations appropriate to these methods.

7. The accuracy of results reported depends upon the technique of measurement, investigation and test used and these values should not be regarded necessarily as characteristics of the strata (see accompanying notes on Investigation Techniques). Where such measurements are critical, the technique of investigation will need to be reviewed and supplementary investigation undertaken in accordance with the advice of the Company where necessary.

8. The samples selected for laboratory test are prepared and tested in accordance with the relevant Clauses of BS 1377 Parts 1 to 8, in a UKAS accredited Laboratory.

10. Any unavoidable variations from specified procedures are identified in the report.

11. Specimens are cut vertically, where this is relevant and can be identified, unless otherwise stated.

12. All the data required by the test procedures are recorded on individual test sheets but the results in the report are presented in summary form to aid understanding and assimilation for design purposes. Where all details are required, these can be made available.

13. Whilst the report may express an opinion on possible configurations of strata between or beyond exploratory holes, or on the possible presence of features based on visual, verbal, written, cartographical, photographic, or published evidence, this is for guidance only and no liability can be accepted for its accuracy.

14. Classification of materials as Made Ground is based on the inspection of retrieved samples or exposed excavations. Where it is obvious that

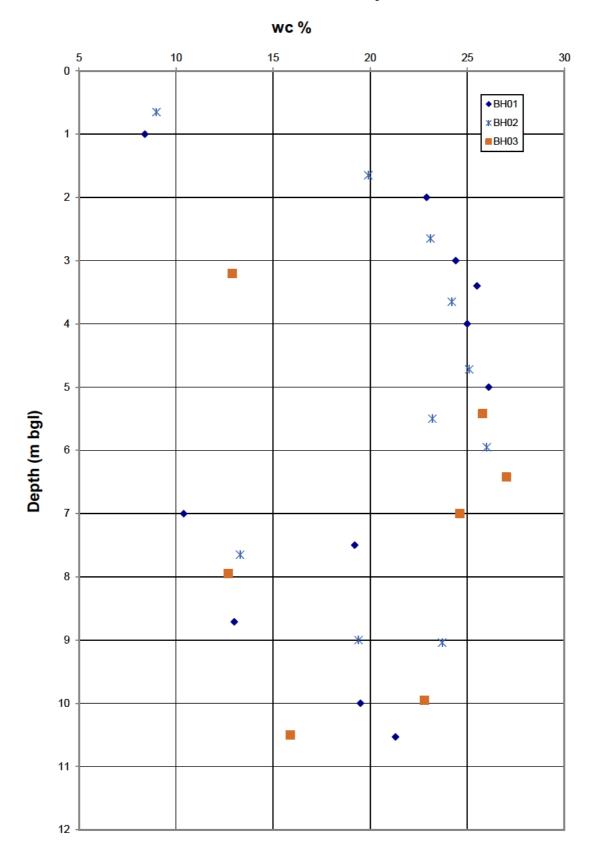
foreign matter such as paper, plastic or metal is present, classification is clear. Frequently, however, for fill materials that arise from the adjacent ground or from the backfilling of excavations, their visual characteristics can closely resemble those of undisturbed ground. Other evidence such as site history, exploratory hole location or other tests may need to be drawn upon to provide clarification. For these reasons, classification of soils on the exploratory hole records as either Made Ground or naturally occurring strata, the boundary between them and any interpretation that this gives rise to should be regarded as provisional and subject to re-evaluation in the light of further data.

15. The classification of materials as Topsoil is generally based on visual description and should not be interpreted to mean that the material so described complies with the criteria for Topsoil used in BS 3882 (1994). Specific testing would be necessary where such definition is a requirement.

16. Ground conditions should be monitored during the construction of the works and the report should be re-evaluated in the light of these data by the supervising geotechnical engineers.

17. Any comments on groundwater conditions are based on observations made at the time of the investigation, unless specifically stated otherwise. It should be noted, however, that the observations are subject to the method and speed of boring, drilling or excavation and that groundwater levels will vary due to seasonal or other effects.

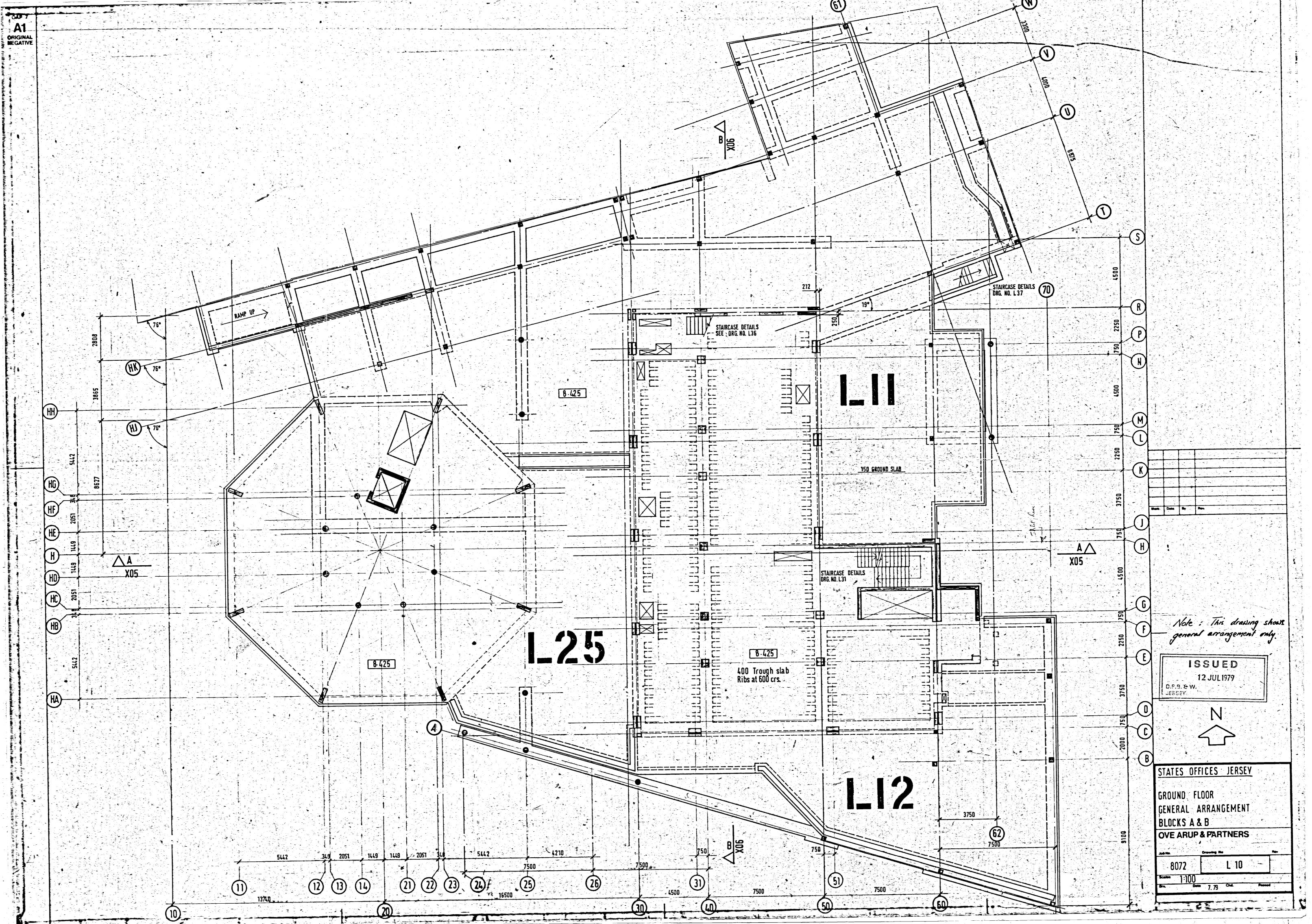
18. Any bearing capacities for conventional spread foundations which are given in the report and interpreted from the investigation are for bases at a minimum depth of 1m below finished ground level in naturally occurring strata and at broadly similar levels throughout individual structures, unless otherwise stated. The foundations should be designed in accordance with the good practice embodied in current Standards and Codes. Foundation design is an iterative process and bearing pressures may need adjustment or other measures may need to be taken in the context of final layouts and levels prior to finalisation of proposals.


19. Unless specifically stated, the investigation does not take account of the possible effects of mineral extraction or of gases from fill or natural sources within, below or outside the site.

20. The costs or economic viability of the proposals referred to in the report, or of the solutions put forward to any problems encountered, will depend on very many factors in addition to geotechnical or geoenvironmental considerations and hence their evaluation is outside the scope of the report.

FIGURE

1. Water content vs Depth


FIGURE 1

Water Content vs. Depth

DRAWINGS

1 Exploratory Holes Plan (Dandara)

