
1 

 

 

 

 

 

 

Amphibian and Reptile Conservation 

RESEARCH REPORT 18/01 

Jersey multi-species 

distribution, habitat 

suitability & connectivity 

modelling 

Appendix C 

R.J. Ward and J.W. Wilkinson 

 

ARC Science Team 

 

 

 

 

 

 



2 

 

Appendix C – Supplementary Methods 

Overview 

This document provides details on the selection, justification and use of methods associated 

to the main report. These include the following steps: 

1. Selection of species to be used in the analysis. 

2. Species distribution modelling to identify the suitability of Jersey’s landscape for a 

set of selected species, investigate the parameters influencing suitability for those 

species and to provide the basis for a resistance surface during connectivity 

modelling. 

3. Identification of the most important areas in Jersey for wildlife (referred to as Habitat 

Concentration Areas (HCAs)) using a binary threshold and fragmentation metrics. 

4. Connectivity modelling to identify the most likely corridors through which species of 

varying dispersal abilities and ecological life-histories may move and disperse. 

5. Prioritisation of HCAs based on their contributions to connectivity. 

 

Software and Data 

This study utilised the following software: 

 MaxEnt v3.4.1 (Phillips et al. 2018) for species distribution modelling 

 ENMTools v1.4.4 (Warren et al. 2010) for assessing correlations between predictor 

variables 

 The freeware known as ‘R’ v.3.4.4 (R Core Team 2018) for data visualisation and 

statistical analyses  

 ArcGIS Pro v.2.0.1. (ESRI 2017a) for compiling, editing and visualising maps 

 ArcMap and ArcCatalog v.10.5.1 (ESRI 2017b) for conducting connectivity analyses 

 Linkage Mapper v.1.1.1 (McRae and Kavanagh 2011) for conducting connectivity 

analyses 

 Conefor v.2.6 (Saura and Torné 2009) for prioritising landscape components for 

protection 
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Data sources are as follows: 

 GIS files have been provided by the Department of Natural Environment, Growth 

Housing and Environment, States of Jersey, Jersey Water and The National Trust for 

Jersey. 

 Species occurrence data were provided by the Jersey Biodiversity Centre, Société 

Jersiaise Botany, Mycology, Entomology and Ornithology sections, Jersey Amphibian 

and Reptile Group as well as private naturalists. 

 Bioclimatic data were downloaded from WorldClim (Fick and Hijmans 2017).  

Throughout the document, source GIS files are displayed in purple italics, and tools are 

indicated in UPPERCASE DARK RED TEXT.
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Step 1: Selection of species 

A preliminary selection of study species was identified through discussion with stakeholders 

including local species experts, applying the following criteria: 

1. Species is not completely widespread throughout the island 

2. Species records are  

a. not heavily biased by survey effort, or  

b. any survey biases can be accounted for 

3. Sufficient records of high accuracy1 are available to construct a species distribution 

model 

4. Species are  

a. of conservation concern; protected or proposed for protection under either the 

Conservation of Wildlife Law (Jersey) 2000 or the Conservation of Wildlife 

(Protected Plants) (Jersey) Order 2009, or 

b. representative of the distribution of species or habitat types or conservation 

concern otherwise unaccounted for. 

Data for those species identified were then sourced from the Jersey Biodiversity Centre 

(JBC) and local taxonomic specialist groups such as the Société Jersiaise sections. Data 

was filtered to include only those records between 2007 and 2017, those considered to have 

accurate identification and a geographic accuracy of ≤ 10 metres. Some species that had 

multiple records but that were highly clustered were removed as spatial filtering would result 

in very few records.  

Species included plants, fungi, insects, volant and non-volant mammals, reptiles and 

amphibians. Birds were excluded due to a lack of data on nesting sites and their ability to 

traverse across the island with ease. However, we account for their needs later in this report. 

As a result, 17 focal species or species groups (genera) were selected for species 

distribution and other modelling approaches described from here on unless stated otherwise. 

Many other species had limited records and / or occurred in few localities; making them 

unsuitable for species distribution modelling. Though there is an abundance of free-flying bat 

data collected through schemes such as iBats (Hawkins et al. 2016) and the use of static 

detectors, without capture, there was risk of species mis-identification using automated call 

ID (Walters et al. 2012). Furthermore, the iBats dataset is concentrated around roads due to 

                                                 

1 We consider high accuracy records to be those that have been validated constituting an accurate 
species identification, and high geographic accuracy within 10 metres of the coordinates provided. 
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the car-based survey methodology used, which therefore introduces heavy spatial biases in 

to the dataset that we have found it difficult to overcome in preliminary tests. Therefore, only 

bat roost data were used in this report. 

To inform steps later on in this report, we conducted a literature review of the ecology, 

conservation and movement and dispersal capabilities of both our focal species and other 

protected species in Jersey (see Appendix B). 

Step 2: Species distribution modelling 

Occurrence records 

Occurrence records of the 17 species identified (Table 5 in main document) were restricted 

to those between 2007 and 2017, that had accurate identification and a geographic accuracy 

of ≤ 10 metres. This ensured records were spatially and temporally accurate, and reduced 

the risk of recently mapped predictor variables (e.g., landcover) being inaccurate in relation 

to old occurrences. To reduce bias in the occurrence datasets, records were spatially filtered 

(Kramer-Schadt et al. 2013) using the CREATE RANDOM POINTS tool (Data Management 

Tools) in ArcGis Pro ModelBuilder so that remaining occurrences were at least 100 m apart 

(Figure C1). This step was repeated 20 times, with the run retaining the most points used for 

further modelling. This method has been shown to be effective in reducing sampling bias 

(e.g. Ward 2017). Alternative methods for dealing with bias include a bias file, which 

accounts for the locations where surveys have taken place and puts a greater weight for 

model predictions on areas that have not been surveyed.  

Predictor layers 

Scientific literature and species experts were consulted to identify potential drivers of 

landscape suitability for each focal species and appropriately parameterise each species 

distribution model. Discussions with species experts were conducted via email and face-to-

face in focus group sessions to identify a list of suitable predictor variables; displayed in 

Table 7 of the main report. To use these in the analyses, it would be necessary to map each 

variable across the island in ArcGIS Pro to produce a layer matching in extent and projection 

of a Jersey base map.  

We first created a ‘base’ layer to which all future layers could be matched against. A 

shapefile depicting Jersey’s terrestrial extent (JsyDissolve.shp) was created and could be 

used for the creation of future shapefiles. This layer excluded any offshore land (e.g. St 

Aubin’s Fort), thus these offshore areas of land and any associated records will not be 
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included in all further analysis steps. This file was also then converted to a raster 

(POLYGON TO RASTER; Conversion Tools) with a 25 metre cell size, ETRS 1989 Jersey 

Transverse Mercator coordinate system (EPSG 4258) and an extent of 31300.4090999177 

(west), 49073.7491000853 (east), 63058.1611000338 (south) 74134.6890999813 (north). 

This layer (base) was then used as a basis for the extent, spatial reference, cell size, 

snapping and clipping of all future raster layers. 

Environmental variables 

Environmental variables were downloaded from WorldClim (www.worldclim.org), consisting 

of data from WorldClim Version 2.0 (Fick and Hijmans 2017) at a resolution of 30 seconds 

(equivalent to ~1 km2) averaged between 1970‒2000. Each of the 19 bioclimatic variables 

(Table C1) were clipped in ModelBuilder with the CLIP tool (Data Management Tools, Figure 

C2) to the extent of the base layer, the raster grids were converted to points (RASTER TO 

POINT; Conversion Tools) in ModelBuilder (Figure C3) and kriged (KRIGING; Spatial 

Analyst Tools) (method: ordinary, semi-variogram model: spherical, search radius: variable) 

to create a smooth surface at 25 metre resolution in ArcGIS Pro. Following inspection, we 

decided to exclude environmental variables from further analyses as they had limited 

variation over the island given its relatively small extent. 

 

 

Figure C1 ModelBuilder scenario for iterating multiple runs of the CREATE RANDOM POINTS tool for 
spatial filtering of occurrence records. The ‘For’ iterator was set from 1 to 20, by 1. The original 
occurrence point layer for each species was used as the constraining feature class with a maximum 
of 10,000 points that could be generated and a minimum allowed distance of 100 metres between 
randomly created points. 

http://www.worldclim.org/
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Table C1 Description of bioclimatic variables sourced from WorldClim. 

Variable Description 

BIO1 Annual mean temperature 

BIO2 Mean diurnal range (Mean of monthly (max temp - min temp) 

BIO3 Isothermality (BIO2 / BIO7)(* 100) 

BIO4 Temperature seasonality (standard deviation * 100) 

BIO5 Max temperature of warmest month 

BIO6 Min temperature of coldest month 

BIO7 Temperature annual range (BIO5 - BIO6) 

BIO8 Mean temperature of wettest quarter 

BIO9 Mean temperature of driest quarter 

BIO10 Mean temperature of warmest quarter 

BIO11 Mean temperature of coldest quarter 

BIO12 Annual precipitation 

BIO13 Precipitation of wettest month 

BIO14 Precipitation of driest month 

BIO15 Precipitation seasonality (coefficient of variation) 

BIO16 Precipitation of wettest quarter 

BIO17 Precipitation of driest quarter 

BIO18 Precipitation of warmest quarter 

BIO19 Precipitation of coldest quarter 

 

 

Figure C2 ModelBuilder scenario for iterating multiple runs of the CLIP tool to clip environmental 
variables to the extent of Jersey.  
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Figure C3 ModelBuilder scenario for iterating multiple runs of the RASTER TO POINT tool to 
transform environmental rasters to points. 

 

Jersey landcover 

Landcover type is often the most important variable in species distribution models as it is a 

fundamental driver of species occurrence. We derived a landcover layer from the Phase 1 

Habitats layer (Habitat_Vegetation.shp) provided by the Department of Natural Environment, 

Growth Housing and Environment, States of Jersey. This file contained detailed descriptions 

of landcover types in the ‘Description’ field, but contained holes which would affect 

subsequent analysis. Therefore, we used the UNION tool (Analysis Tools) in ArcGIS Pro to 

combine it with the following layers: 

1. Buildings (Buildings.shp) 

2. Road polygons (Roads.shp) 

3. Land parcels (Landparcels.shp) 

A field within the resulting combination layer (LandCombined.shp) was then generated and 

reclassified in ArcGIS Pro to contain the relevant landcover description from 23 categories 

(Table 6 in main document). These 23 categories were selected based on the study aims 

and existing landcover categorisation schemes in Jersey and the UK (see Appendix A). This 

final shapefile was validated using close visual inspection of maps to check for gaps and 

inconsistencies, with high resolution aerial imaging used as a basis for visual checks. The 

boundaries of polygons within the same landcover class were then dissolved using the 

DISSOLVE tool (Data Management Tools), resulting in Jersey_LandcoverDiss1.shp which 

was subsequently clipped to the base shapefile described above to produce 

Jersey_LandDissClip1.shp. Following this, it was converted to a raster (POLYGON TO 

RASTER; Conversion Tools) using the base raster and the maximum combined area cell 

assignment type to produce r_landcover1.  

This conversion can cause smaller features to be absorbed by more dominant landcover 

features and subsequently ‘lost’ during analysis. Therefore, we generated layers 
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representing the Euclidean (straight-line) distance to small or linear features (roads, 

boundaries, freshwater, amphibians as a proxy for grass snake prey) and to each landcover 

class. The Jersey_LandDissClip1.shp was split by attribute (by landcover type) (SPLIT; 

Analysis Tools) to create separate shapefiles for each landcover type. In some instances, we 

also created combined shapefiles for grouped landcover types (e.g. all grassland types, all 

bare ground types) (see Table 7 in main document). The Euclidean (straight-line) distance to 

features for each of these landcover files was then calculated to create rasters (EUCLIDEAN 

DISTANCE; Spatial Analyst Tools).  

Similar rasters were created for the distance to buildings (Buildings.shp) (including separate 

rasters for distances to minor and major buildings), roads (using Roadcentrelines.shp to first 

create RoadsOnly.shp after the removal of non-road classes), built-up (urban) areas 

(BuiltUp2011.shp), five boundary feature (Boundary.shp) distance rasters (bank, hedge, dry 

stone wall, mortared wall, stream) and all boundaries (excluding fence, streams, ditches and 

no boundary classes), toad records (Toads_combined.shp) refined to ≤ 100 m accuracy and 

recorded from 2007 onwards (Toads_new_100m.shp) and finally to ponds and reservoirs 

(Water.shp). 

We also calculated density layers within a within a 250 m radius with the KERNEL DENSITY 

tool (Spatial Analyst Tools) for permanent anthropogenic structures (buildings, roads and 

street lighting) and human population. Building density was calculated by first generating a 

single point feature per major building (build_pts.shp, ‘Feature’ = Major Building or 

MultiProperty) (FEATURE TO POINT; Data Management Tools), clipping (CLIP; Analysis 

Tools) those points to Jersey’s extent (JsyDissolve.shp) and then applying the KERNEL 

DENSITY tool (Spatial Analyst Tools) to those remaining points with density cell values, the 

planar method and an output of density per square metre. Road density was also created in 

a similar way (based on RoadsOnly.shp), population density from the 

EnumerationDistricts.shp file (based on the ‘MedPopDen’ field) and finally street lighting 

density from S_Lighting2011.shp. 

Lastly, a digital elevation model (DEM) was calculated based on a pre-existing file 

(DEMTrimmed.tif). This was resampled (RESAMPLE; Data Management Tools) with bilinear 

sampling, and gaps filled using a conditional Focal Statistics python argument: 

fillDEM = arcpy.sa.Con (arcpy.sa.IsNull ('DEM_25m'), arcpy.sa.FocalStatistics 

('DEM_25m', arcpy.sa.NbrCircle (2, 'CELL'),' MEAN'), 'DEM_25m') 
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The EXTRACT BY MASK tool (Spatial Analyst Tools) was then used to create the final DEM 

layer at a 25 metre resolution, using the base raster as a template. A similar process was 

used to create an aspect layer. 

Prior to modelling, all predictor layers were in ASCII format and checked to ensure they 

matched in extent, resolution and coordinate system. 

Modelling 

Collinearity 

Correlations between variables in each species’ variable set were tested in ENMTools v1.4.4 

(Warren et al. 2010). Where two variables had Pearson’s R2 ≥ 0.7, the variable considered 

to have the most ecological relevance was retained and the other removed (Table C2). The 

Variance Inflation Factor (VIF) for each remaining variable in each species variable set was 

then calculated in R (R Core Team 2018) using the VIFCOR and VIFSTEP functions in the 

package usdm (Naimi 2015). All VIF values were < 3 (Zuur et al. 2010), and so no further 

variables were removed. The final set of predictor variables are listed for each species in 

Appendix D. A layer for each of these predictive variables was included in the MaxEnt 

analysis in order to predict suitability across the island and identify the most likely drivers of 

species distribution.  

Model settings 

Species distribution modelling approaches can make use of presence-absence data, or 

more commonly, presence-background data (also known as presence-only data) where true 

absences are unknown or uncertain. In this study we take a presence-background approach 

due to the data available, running all models in Maxent V.3.4.1 (available from 

https://biodiversityinformatics.amnh.org/open_source/maxent/) (Phillips et al. 2018). This 

programme uses machine learning and Maximum Entropy to make species distribution 

predictions (Phillips et al. 2006). This software is widely used, and has been shown to be 

suitable even with small sample sizes (Wisz et al. 2008).  

We used the ClogLog transform output, which can be interpreted as predicted probability of 

presence. However here, we consider it predicted probability of suitability due to the inherent 

detectability issues of many species. Due to small sample size, k-fold cross-validation was 

used to generate test and training datasets; whereby the data is partitioned and tested and 

trained using each partition. Each model was run up to 20 times (less for species with small 

numbers of occurrence records), with a maximum of 5,000 iterations and no more than 

https://biodiversityinformatics.amnh.org/open_source/maxent/
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10,000 background points. All other settings were left as the defaults, and the average of the 

runs was used for model selection steps and interpretation. 

Model selection 

Models were assessed using threshold-independent measures and inspection of jackknife 

responses. Threshold-independent measures were based on the receiving operating 

characteristics (ROC) under the curve (AUC). Models can be ranked by these threshold-

independent measures by assessing how well the models discriminate between presences 

and the background (Phillips et al. 2006). The measures used consisted of the area under 

the curve of the test data (AUCtest) (Phillips et al. 2006), and the difference (AUCdiff) between 

training AUC (AUCtrain) and testing AUC (AUCtest) values (Warren and Seifert 2011)., 

calculated as AUCdiff = AUCtrain - AUCtest. 

Higher AUCtest values indicate better performing models, with values > 0.7 considered to 

indicate good model performance. However, this approach does not assess overfitting 

(Radosavljevic and Anderson 2014), which is better measured by AUCdiff. Lower AUCdiff 

values are expected to indicate more reliable models (Warren and Seifert 2011). Therefore, 

the optimum model was that which had the highest AUCtest and lowest AUCdiff values whilst 

producing biologically plausible outputs. 

After identifying the optimum model, we tested the effects of different regularisation values 

on each species’ optimum model to identify the value where the risks of over-fitting and 

unnecessary model complexity were minimised (Merow et al. 2013), using the same 

threshold-independent and jackknife measures to assess their performance. Briefly, higher 

regularisation values increase smoothing of the response curves and therefore produce a 

more ‘regular’ model output which may be more suitable for generalising to wider areas. The 

default value of one was calculated by (Phillips and Dudík 2008) using a variety of test 

species, but may not be applicable to all species or situations. The regularisation values 

tested here therefore were 0.1, 0.5, and upwards to the 10.0 at 0.5 intervals which alter the 

default value by multiplying it by our given test values (Pearson et al. 2007; Merow et al. 

2013; Boria et al. 2014; Radosavljevic and Anderson 2014). Visual inspection of the maps 

produced was also used to ensure biological plausibility. The model showing the best overall 

performance and with the most suitable regularisation value was then selected as the final 

model for that species, from which the influence of predictor variables was assessed from 

permutation importance and by inspecting the outputs from jackknife tests; whereby 

variables with a strong influence on the training gain (increasing when present and 

decreasing when absent) had the greatest influence. 
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Table C2 Predictor variables with a Pearson’s correlation (R2) ≥ 0.7 for each species. The variables with the most ecological relevance were retained (shown 
in bold) and the others discarded. Where no predictor variables were highly correlated, rows are shown with ‘‒’. Full explanations of the variables are shown 

in Table 7 of the main document. 

Species Variable 1 Variable 2 Correlation (R2) 

Western toad distance to gardens distance to (all) buildings 0.770 

 distance to hedges distance to (all) boundary features 0.921 

 distance to wetlands distance to ponds and reservoirs 0.727 

 building density population density 0.742 

 building density road density 0.807 

Grass snake distance to (all) boundary features distance to banks 0.892 

 distance to dune heathland distance to dune grassland 0.894 

 distance to dune marram distance to dune grassland 0.906 

 distance to dune marram distance to dune heathland 0.980 

 distance to hedges distance to banks 0.815 

 distance to hedges distance to (all) boundary features 0.921 

 distance to wetlands distance to ponds and reservoirs 0.727 

 building density road density 0.807 

 distance to (all) scrub distance to scrub 0.893 

Bank vole distance to (all) boundary features distance to banks 0.892 

 distance to hedges distance to banks 0.815 

 distance to hedges distance to (all) boundary features 0.921 

 distance to treelines distance to banks 0.878 

 distance to treelines distance to (all) boundary features 0.804 
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  Table C2 continued 

Species Variable 1 Variable 2 Correlation (R2) 

 distance to treelines distance to hedges 0.718 

Common pipistrelle bat distance to (all) boundary features distance to banks 0.892 

 distance to hedges distance to banks 0.815 

 distance to hedges distance to (all) boundary features 0.921 

 distance to historic farmsteads distance to historic buildings 0.745 

 distance to treelines distance to banks 0.878 

 distance to treelines distance to (all) boundary features 0.804 

 distance to treelines distance to hedges 0.718 

 street lighting density population density 0.731 

 building density population density 0.742 

 building density road density 0.807 

 building density street lighting density 0.719 

Long-eared bats distance to hedges distance to (all) boundary features 0.921 

 distance to historic farmsteads distance to historic buildings 0.745 

 distance to gardens distance to historic buildings 0.748 

 distance to gardens distance to major buildings 0.815 

 distance to treelines distance to (all) boundary features 0.804 

 distance to treelines distance to hedges 0.718 

 building density road density 0.807 

 building density street lighting density 0.719 
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  Table C2 continued 

Species Variable 1 Variable 2 Correlation (R2) 

Red squirrel distance to (all) boundary features distance to banks 0.892 

 distance to hedges distance to banks 0.815 

 distance to hedges distance to (all) boundary features 0.921 

 distance to treelines distance to banks 0.878 

 distance to treelines distance to (all) boundary features 0.804 

 distance to treelines distance to hedges 0.718 

 distance to broadleaved woodland distance to (all) woodland 0.841 

 distance to gardens distance to major buildings 0.815 

 building density road density 0.807 

 building density population density 0.742 

Field cricket ‒ ‒ ‒ 

Waxcap fungi ‒ ‒ ‒ 

Scaly stalkball distance to (all) boundary features distance to banks 0.892 

 distance to dune marram distance to dune grassland 0.906 

Green-winged orchid ‒ ‒ ‒ 

Pyramidal orchid distance to dune marram distance to dune grassland 0.906 

Southern marsh-orchid distance to wetlands distance to ponds and reservoirs 0.727 

Lizard orchid distance to dune heathland distance to dune grassland 0.894 

 distance to dune marram distance to dune grassland 0.906 

 distance to dune marram distance to dune heathland 0.980 
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  Table C2 continued 

Species Variable 1 Variable 2 Correlation (R2) 

Early-purple orchid distance to (all) boundary features distance to banks 0.892 

 distance to hedges distance to banks 0.815 

 distance to hedges distance to (all) boundary features 0.921 

 distance to (all) scrub distance to scrub 0.893 

Jersey buttercup distance to (all) scrub distance to scrub 0.893 

Ragged robin distance to hedges distance to banks 0.815 

 distance to wetlands distance to ponds and reservoirs 0.727 

Autumn lady’s-tresses distance to dune heathland distance to dune grassland 0.894 
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 Step 3: Identification and reduction of Habitat Concentration Areas 

(HCAs) 

The outputs from species distribution modelling consist of each cell in a landscape being 

assigned a value related to its suitability or the likelihood that the species of interest may 

occur there (depending on interpretation). In MaxEnt, the ClogLog outputs are bounded 

between 0 and 1, with higher values indicating greater suitability. For the purposes of 

selecting the most important areas in a landscape for protection, management, monitoring 

and connecting it can be necessary to use a threshold above which patches of land are 

considered to be most suitable. We refer to these areas as Habitat Concentration Areas 

(HCAs) (sensu WHCWG 2010).  

Setting a binary threshold 

To identify HCAs, we used an objective binary threshold known as maxSSS which 

maximises the sum of sensitivity (the percentage of correctly classified presences) and 

specificity (the percentage of correctly classified absences) (Liu et al. 2005; Peterson et al. 

2011). Taking such an approach is not always appropriate but is supported for identifying 

conservation priorities (Guillera-Arroita et al. 2015) and has been widely used. These 

outputs were reduced further by a series of steps to (i) remove small, disaggregated patches 

expected to have little conservation value and (ii) parts of the landscape that were unsuitable 

but that may have been overlooked due to the assignment of landcover to one of 23 habitat 

classes and subsequent conversion to a 25 metre resolution raster for use in MaxEnt. 

Removing small, isolated patches 

Small, isolated HCAs were identified by using FRAGSTATS v4.2 software (McGarigal et al. 

2012) to calculate the Proximity Index (Gustafson and Parker 1994) at a radius of 20 km to 

cover the full extent of Jersey, and Patch Area values. These were calculated with the 8-cell 

neighbourhood rule and we generated a Patch ID file to allow the results to be easily 

transferred to the HCA shapefiles (joining the PID field to the gridcode field of the polygon 

HCAs). The Proximity Index measures how isolated a patch may be but can be heavily 

influenced by patch size and subsequently attributes larger patches with smaller values than 

a comparable small patch (Hargis et al. 1998). This issue was circumvented by calculating a 

Modified Proximity Index (Bani et al. 2006) as 

 Equation 1 
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Patches with MPI < 0.6 were removed from each species’ HCA layer, and were on average 

0.116 ha in area (range: 0.063‒1.688, SD: 0.105), resulting in average HCA decreases of 

38.11 ha per species (range: 2.13‒100.00, SD: 32.53).  

Removing unsuitable habitat 

Further areas of the HCAs were removed where they were considered to comprise 

unsuitable habitat using the ERASE tool (Analysis Tools) in ModelBuilder (Figure C4). These 

removals included water bodies, unnatural bare ground (e.g. roads), buildings and recreation 

fields, and are summarised in Table C3. 

 

Figure C4 ModelBuilder scenario example for removal of unsuitable feature types from HCAs. 
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Table C3 Table showing the features removed from each species to produce a final Habitat Concentration Area (HCA), as indicated by ‘+’. 

Species Bare ground (unnatural) Recreation fields Swimming pools Buildings Water 

Western toad + + + + ‒ 

Grass snake + + + + ‒ 

Bank vole + + + + + 

Common pipistrelle bats + + + ‒ + 

Long-eared bats + + + ‒ + 

Red squirrel + + + + + 

Field cricket + + + + + 

Waxcap fungi + + + + + 

Scaly stalkball + + + + + 

Green-winged orchid + + + + + 

Pyramidal orchid + + + + + 

Southern marsh-orchid + + + + + 

Lizard orchid + + + + + 

Early-purple orchid + + + + + 

Jersey buttercup + + + + + 

Ragged robin + + + + + 

Autumn lady’s-tresses + + + + + 
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HCA similarity and distribution 

The overlaps between the final HCAs for each species were assessed in ArcGIS Pro using 

the INTERSECT tool (Analysis Tools) in ModelBuilder (Figure C5) to create new files for 

each pairwise combination of species. We subsequently summarised each file in 

ModelBuilder (Figure C6) to produce a text file for each species that was then imported and 

queried in Microsoft Excel. A combined HCA map was also generated by merging (MERGE; 

Data Management Tools) and dissolving (DISSOLVE; Data Management Tools) the 

individual species’ HCAs in to a single shapefile. The HCAs for each focal species and the 

combined HCAs were then contrasted against the landscape designations given in Table 4 

of the main document via the same intersection process, to identify the proportion of HCAs 

falling within each designation, and the proportion of each designation containing HCAs. The 

HCAs from each species were then overlaid to create a ‘hotspot’ map by converting the HCA 

shapefiles to rasters (POLYGON TO RASTER; Conversion Tools), reclassifying values ≥ 1 

to 1, and 0 values and NODATA to 0 (RECLASSIFY; Spatial Analyst Tools). We then used 

the WEIGHTED SUM tool (Spatial Analyst Tools) to generate hotspot maps for the following 

scenarios; (i) all (17) focal species including built-up areas, (ii) all (17) focal species 

excluding built-up areas, (iii) all focal species that do not have a large (≥ 10%) HCA 

component within built-up areas and (iv) only those species that do have a large (≥ 10%) 

HCA component within built-up areas. 

 

 

Figure C5 ModelBuilder scenario example used to calculate the intersect between HCAs for different 
species. 
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Figure C6 ModelBuilder scenario example used to summarise the area of intersections HCAs for 
different species combinations. 

 

HCA validation 

The coverage provided by the final HCAs as a representation of areas of conservation 

importance in Jersey were validated using occurrence data consisting of 10,113 records 

across 98 species (see Table 8 in the main document) restricted to records between 2007 

and 2017 but of all geographic accuracies. This species set comprised a large number of 

species currently protected or proposed for protection, and a further 26 fungi species to 

provide good representation of this taxonomic group. From the merged and dissolved multi-

species HCA map described in the previous step we generated a maximum of 

1,000,000,000 random points (CREATE RANDOM POINTS; Tools) within the polygons. This 

step ensures that no small polygons are missed when calculating the next distance step. A 

Euclidean distance surface was then generated representing the distance to these HCA 

points with the EUCLIDEAN DISTANCE tool (Spatial Analyst Tools) with a 5 metre cell size. 

We then assessed the percentage of records that occurred within HCAs (i.e. distance = 0) 

and the average distances at which they occurred from HCAs by extracting the Euclidean 

distance values to the species occurrence points (EXTRACT VALUES TO POINTS; Spatial 

Analyst Tools) to create a point features file containing the Euclidean distance attributes at 

those locations, ensuring the output points features were masked to the Jersey base 

shapefile (JsyDissolve.shp). The variable geographic accuracy of data used in this step 

meant that records falling outside of HCAs may have actually occurred within them but that 

coordinate data was inaccurate. The inverse may also be true. A visual representation of the 

distribution of these records was also generated in the form of a hotspot map at a 100 metre 

resolution by first converting occurrence points to a raster for each species using the POINT 

TO RASTER tool (Conversion Tools) in ModelBuilder (Figure C7) (specifying the given 

resolutions of 100 metre cell size) and then using the WEIGHTED SUM tool (Spatial Analyst 

Tools) to generate hotspot maps for (i) all 98 species protected of proposed for protection, 
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(ii) 83 species excluding those analysed as focal species and (iii) the 26 fungi species. A 

final validation step was undertaken by qualitatively comparing areas identified by the 

Société Jersiaise Ornithology Section as being of high importance to local bird populations 

(see Appendix E) against our HCA predictions. 

 

Figure C7 ModelBuilder scenario for converting occurrence points to rasters for multiple species with 
the POINT TO RASTER tool. 

 

Step 4: Connectivity modelling 

Several approaches can be taken to assess connectivity between predefined areas using 

methods such as graph and circuit theory or least-cost paths. Graphs can be envisaged as a 

network of nodes or habitat patches requiring connecting, joined by edges along which 

species may be able to disperse between two nodes. The ability of a species to move along 

an edge is dependent on the weight of the edge (McRae et al. 2008). Alternatively, least-cost 

paths follow the path of least resistance between two nodes. The results of connectivity 

modelling can be heavily influenced by how the model is parameterised, including the way in 

which nodes and resistance surfaces are defined.  

Previous studies have applied different methods and considerations to identify the best 

corridors for wildlife, including using resource selection approaches (Abrahms et al. 2017), 

accounting for species movement and dispersal capabilities, the generation time of an 

organism, genetic connectivity, circuit theory, least-cost paths, and considering the fact that 

species may behave and move differently within their home-ranges compared to during 

dispersal (i.e. studies basing habitat selection on home-range studies may be incorrect if 

species select habitat differently during dispersal; they may be willing to use poorer habitats 

in order to achieve their dispersal aims and access resources). The results may also be 

influenced by the scale of the study and temporal changes in resistance.  

Creating corridors for multiple species is regarded as best practice to identify robust 

connectivity networks, and reduces the risk of errors associated with single-species 
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approaches. Approaches to generating them include overlaying multiple single-species 

maps of linkages, or creating a single, multi-species network from the start (Marrotte et al. 

2017).  

Where to connect? 

We used our HCAs as nodes for connectivity in the landscape. As built-up areas are 

generally unsuitable for protection, and the diversity of land-owners makes it difficult to 

inform management, we opted to remove built-up areas from HCAs prior to calculating least-

cost paths and corridors. However, separate runs including HCAs within built-up areas were 

carried out for urban-dwelling species (defined as species with ≥ 10% of their HCAs within 

built-up areas). 

Creating resistance surfaces 

Resistance surfaces can be created through many avenues, but should preferentially 

parameterised based on quantitative genetic or movement data (Khosravi et al. 2018); 

however, these data are often lacking for single species, and more so for multi-species 

approaches. Alternatively, they can be generated by transforming measures of habitat 

suitability (Schoville et al. 2018) or be based on expert opinion (Sawyer et al. 2011). 

Resistance surfaces based on habitat suitability can also be calculated using additive or 

multiplicative approaches, and with different transformations of habitat suitability scores (e.g. 

Keeley et al. 2016). 

Here we parameterise our resistance surfaces using a transformation of habitat suitability 

estimates. The habitat suitability estimates were the ClogLog outputs from the respective 

species’ final MaxEnt output. These were transformed in to a resistance surface using a 

linear negative transformation (Wilkinson and Starnes 2016) calculated as 

Rlin = ((1-[MaxEnt_output])*100)+1 Equation 2 

with values rescaled between 1 and 100 using the RESCALE BY FUNCTION tool (Spatial 

Analyst Tools). To this, we added further resistance for roads and other transport 

infrastructure (Roadcentrelines.shp) with resistance values dependent on their width (e.g. 

single, dual or triple lane), with wider roads given greater resistance. These values were 

based on their expected risk of mortality, either from traffic or exposure to predators. Built-up 

areas were also assigned higher resistance, using building density as a proxy (see Table 7 

in the main document). Building densities ranged between 0 and 0.0053, and were rescaled 

between 0 (no built-up resistance) and 20 (high built-up resistance) with the RESCALE BY 

FUNCTION tool (Spatial Analyst Tools).  



26 

 

A final resistance layer was added consisting of boundary features. These can have both 

positive and negative influences on movement, providing shelter and other resources, or by 

serving as a physical barrier. The Boundary.shp shapefile was used, which contained 37 

categories of which 36 were related to physical boundary features. Those listed as bank, 

hedge, ditch or wall were considered to aid dispersal of species and were assigned a small 

negative resistance value. Fences were assigned small positive values (1), and streams 

were not given a resistance value.  

Conversion of linear shapefile features (e.g. boundaries and roads) to rasters can result in 

gaps or ‘cracks’, through which models may mistakenly predict least-cost routes to occur 

(Adriaensen et al. 2003; Rothley 2005; Theobald 2005). This can be resolved through the 

use of buffering the linear feature by half the diagonal cell distance, or through the use of a 

neighbourhood operation (e.g. Rothley 2005). Theobald (2005) provided an algorithm to 

check for cracks in linear features. We followed this, and visually inspected each ‘crack’ 

identified by the algorithm. None of the cracks identified in the boundary or road layers were 

true. Therefore, we made no further adjustments to these rasters before summing them with 

the transformed MaxEnt output. All resistance surface values are summarised in Table 9 of 

the main document. For each species, the four resistance surfaces (negative transformation 

of MaxEnt habitat suitability, roads, building density and boundary features) were summed 

using the WEIGHTED SUM tool (Spatial Analyst Tools) to produce a final resistance surface. 

Though the transformed MaxEnt surfaces were for specific species, we treated them as 

representatives for a given ecosystem or niche, and carried out all further steps based on 

the aim of generating wildlife corridors that would encourage dispersal of the majority of 

Jersey’s terrestrial animal species. Given the difficulties in modelling the dispersal of plant 

and fungi, we did not model these specifically but assumed a well-functioning landscape for 

animals would also benefit plants and fungi. 

Modelling least-cost paths and corridors 

We first used the Linkage Mapper toolbox (McRae and Kavanagh 2011) in ArcCatalog to 

build network and map linkages (connections) between HCAs across the resistance surface. 

We used the cost-weighted and Euclidean adjacency method and dropped corridors that 

intersected core areas (HCAs). Linkages were calculated without restriction across the 

whole island and then restricted to three separate scenarios equivalent to Maximum 

Euclidean corridor distances of (i) 250 m, (ii) 1000 m and (iii) 4000 m. These distance values 

were based on our review of known species movement capabilities (Appendix B) and are 

expected to represent a wide range of species. Linkage Mapper allows distances to be 
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assessed based on either Euclidean (straight-line) distance, or cost-weighted distance. The 

latter can be described as the cumulative cost of moving through each cell where the cost of 

a given cell is its resistance value multiplied by its size (i.e. 25 metres) (WHCWG 2010). 

Corridors were designed excluding HCAs that occurred within built-up areas unless a focal 

species was considered to be an urban-dweller, in which case corridors were designed 

including HCAs occurring within built-up areas. This was based on the premise that HCAs 

occurring within built-up areas would be unsuitable for protection as they mainly consisted of 

gardens, buildings and other privately-owned features. 

To identify linkage zones (sensu WHCWG 2010), normalised least-cost corridors were 

limited to cut-off values equivalent to a Euclidean corridor width of 100 metres across all 

scenarios, calculating the associated cost-weighted distance value based on the mean 

resistance values per metre in HCAs shown in Table C4 multiplied by 100. This relatively 

small value was used due to the fine-scale nature of the project. Similarities between 

corridor predictions were assessed between species to identify commonalities between them 

by overlaying them using the WEIGHTED SUM tool (Spatial Analyst Tools). Areas with 

greater overlap are therefore considered to have greater importance for overall connectivity, 

and can be used as targets for conservation management. 
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Table C4 Summary table of mean resistance values within HCAs either excluding or including HCAs 
within built-up areas, and the associated cost-weighted distance for Euclidean distances of 100 and 
1000 metres. Cost-weighted distances are calculated as the mean resistance value per metre 
multiplied by 100 or 1000 respectively. 

Species 

Mean 

resistance per 

metre 

Cost-weighted 

distance equivalent 

to 100 m 

Cost-weighted 

distance equivalent 

to 1000 m 

Excluding built-up HCAs 

 

 

 Western toad 53.76 5376.00 53760.85 

Grass snake 63.43 6343.00 63430.79 

Bank vole 30.77 3077.00 30772.28 

Common pipistrelle bat 70.53 7053.00 70528.37 

Long-eared bats 46.99 4699.00 46985.96 

Red squirrel 39.41 3941.00 39405.47 

Field cricket 40.94 4094.00 40943.54 

Waxcap fungi 62.38 6238.00 62384.44 

Scaly stalkball 34.78 3478.00 34776.02 

Green-winged orchid 45.27 4527.00 45266.33 

Pyramidal orchid 34.26 3426.00 34260.81 

Southern-marsh orchid 36.21 3621.00 36210.78 

Lizard orchid 17.68 1768.00 17683.51 

Early-purple orchid 3.19 319.00 3194.23 

Jersey buttercup 38.16 3816.00 38163.91 

Ragged robin 65.88 6588.00 65878.63 

Autumn lady’s-tresses 65.67 6567.00 65668.82 

Including built-up HCAs 

 

 

 Western toad 48.97 4897.00 48966.33 

Common pipistrelle bat 71.41 7141.00 71414.23 

Long-eared bats 47.20 4720.00 47204.90 

Red squirrel 39.57 3957.00 39567.28 

Autumn lady’s-tresses 65.55 6555.00 65547.83 
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Step 5: Priorities for protection and restoration 

Connectivity indices 

We used the command interface of the graph software Conefor v2.6 (Saura and Torné 2009) 

(www.conefor.org) to assess the importance of HCAs based on five indices related to their 

contribution to landscape connectivity. The metrics were (i) the integral index of connectivity 

(dIIC) (Pascual-Hortal and Saura 2006), (ii) the probability of connectivity (dPC) (Saura and 

Pascual-Hortal 2007) and the (iii) intra, (iv) flux and (v) connector fractions of the dPC metric 

(Saura and Rubio 2010; Baranyi et al. 2011). The intra fraction is a measure of intra-patch 

connectivity, whereas the flux and connector fractions are measures of inter-patch 

connectivity. Higher values of these indices indicate a greater contribution to landscape 

connectivity. dIIC is a binary metric, whereas dPC is probabilistic.  

Selecting and scoring nodes 

To calculate the connectivity metrics, we used the HCAs as nodes, with their mean habitat 

suitability used to represent their value (calculated as the summed value of the inverse 

resistance surface within that polygon). We also input the cost-weighted distances calculated 

previously in Linkage Mapper as distance measures of connectivity within the connection 

file.  

In order to obtain the inverse of resistance values for the HCAs, we used RASTER 

CALCULATOR (Spatial Analyst Tools) in ArcGIS Pro with the formula shown in Equation 3, 

where R is a species’ resistance surface, rMax is the maximum resistance value in that 

surface and rMin is the minimum. 

 Equation 3 

Following this, the values of the cells falling within each HCA were summed to assign each 

HCA with a value representing both its area and habitat suitability. This was done by first 

multiplying the inverted resistance values by 100,000, converting them to integers, 

converting the integer rasters to polygons, adding a new field to contain the original raster 

values, and dividing the integer values by 100,000 to populate the ‘original’ field with the 

inverse of the original raster resistance values. We then used the INTERSECT tool (Analysis 

Tools) to create a shapefile containing the new suitability values for each of the cells in each 

HCA, and calculated the node value of a HCA as the suitability value in a cell multiplied by 

the size of the HCA polygon (in hectares) occurring within that cell. These values were then 

http://www.conefor.org/
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summed across all cells comprising a single HCA to assign a single habitat suitability value 

to each HCA. 

Connection file 

The connection file was in partial format, and consisted of the cost-weighted distance values 

calculated previously in Linkage Mapper between each pair of HCAs. We used a partial file 

as we had specified Linkage Mapper to drop corridors that intersected HCAs. Conefor 

requires a distance threshold to be set for each of the connectivity metrics used here. 

Therefore, we carried out runs at a single level equivalent to an intermediate Euclidean 

distance of 1000 metres with a probability of 0.01 for dPC indices. These cost-distance 

values were calculated separately for each species as the mean cell value falling within each 

HCA from the resistance rasters described above, and are shown in Table C4. They were 

calculated in a similar manner as that described above for calculating HCA suitability values, 

without the final summing step or inverting of the raster. We interpret these values as the 

resistance expected to occur within a cell in good quality habitat, given that they fall within 

predicted HCAs. Other distances (250 and 4000 m) were not assessed due to processing 

time constraints. We requested delta outputs, and kept all other settings as defaults. 

Pearson’s correlation tests were used to assess similarities between the five different indices 

with the COR( ) function in R. Only those deemed to hold unique value were retained for 

further assessment, and the Conefor node importance tables were then joined to the HCA 

polygons using the ADD JOIN tool (Data Management Tools), using Node ID / PID as the 

respective join fields. We then visualised the importance of each HCA based on the 

remaining indices. Following this, we converted the polygons to separate rasters for each of 

the three indices, and rescaled each raster to between 0 and 1 with a linear function with the 

RESCALE BY FUNCTION tool (Spatial Analyst Tools) to provide comparable outputs across 

species. We then reclassified nodata values to 0 to avoid gaps in the maps and used the 

WEIGHTED SUM tool (Spatial Analyst Tools) to sum the rasters and identify areas of high 

importance for connectivity based on each of the indices. Higher values reflected greater 

priorities for connectivity. From these, we overlaid the varying landcover designations to 

identify areas of high importance but low protection to provide priorities for protection. 

Overall prioritisation was then assessed based on landscape designations (see Table 4 in 

the main document) and contribution to connectivity. Following the premise that areas that 

are currently unprotected are at greater risk of loss, these were prioritised above areas 

already within statutory designations. Therefore, we evaluated areas separately based on 

their existing designation. 
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