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Executive Summary 

Report objectives: The Government of Jersey is signatory to a number of multi-lateral environmental 
agreements, for which ongoing monitoring of protected species constitutes a vital part of the reporting 
requirements. Bat populations form an important component of these legal requirements due to their 
sensitivity to environmental change, and their role as bioindicators for wider environmental health. 
However, despite a wealth of bat survey activity in Jersey, including acoustic driven transects for the 
Indicator Bats Programme (iBats), robust population trends are absent for many species. In this report, 
we describe the design and implementation of an island-wide static acoustic monitoring system for 
Jersey and, by analyzing data gathered from two pilot surveys (July 2018 & 2019), we assess its potential 
for generating long-term population trends for a wide range of bat species. Finally, we suggest a number 
of recommendations for the development of a bat population monitoring programme in Jersey. 

Summary of findings: Implementing a static sensor network that uses low cost audio sensors 
(AudioMoths) and efficient open-source automated acoustic machine learning algorithms (BatDetect 
and BatIdentify), enables a large amount of occupancy and activity data to be collected across a range 
of available habitats and species on a landscape scale. Results from two pilot surveys where sensors 
were set to record continuously during the night in 1 km grids (July 2018 – 90 sensors were placed in five 
habitat types in proportion to habitat type availability; July 2019 –50 sensors were equally placed in five 
habitat types, 10 in each) suggest the following:  

1) The performance of BatDetect v.2 to find calls of all bat species in Jersey in audiomoth 
recordings as determined by False Positive Tolerances, FPTs through manual verification is high 
(FPT95 - <5% of classifications are likely false). However, the accuracies of species classifications 
are more variable, with one resident (Pipistrellus kuhlii) and two vagrant (Hypsugo savii, Myotis 
emarginatus) Jersey bat species not included in the BatIdentify v.2 training set and cannot 
therefore be identified. However, classifications are accurate enough (FPTs >50) to generate 
robust data for five species/species groups (Eptesicus serotinus, M. nattereri, P. nathusii/kuhlii, 
P. pipistrellus and Plecotus spp.), with classifications of E. serotinus, P. nathusii/kuhlii, and P. 
pipistrellus being especially accurate (FPT90 - <10% of classifications are likely false). FPTs for 
other species were low, including surprisingly a widespread and common species in Jersey with 
a distinctive call (P. pygmaeus). Including missing species and increasing examples of existing 
species into BatIdentify would improve classifier accuracy. Additionally, increasing the sample 
sizes of the manually verified calls would add clarity of the FPT analyses.  

2) Using the five species with FPTs >50, analysis of occupancy, Ψ and detection, p using data across 
2018-19 suggested that P. pipistrellus had the highest occupancy across the island (Ψ ~ 1), 
followed by Plecotus spp. (Ψ = 0.95-0.83), P. nathusii/kuhlii (Ψ = 0.88-0.75), and M. nattereri (Ψ 
= 0.22).  E. serotinus occupancy estimates were more variable and ranged from 0.99-0.31 across 
a range of FPT thresholds. For species with lower FPTs their occupancy and detection estimates 
should be used cautiously. For widespread and common species where variation in occupancy is 
low, other metrics such as abundance (measured as relative abundance of acoustic activity) may 
be more useful to detect population changes.    
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3) Our results using the occupancy and detection estimates from the 2019 survey in Jersey and those 
from the UK (for species we did not have reliable values for), indicate that 90 sites will be sufficient 
to detect a 25% change in occupancy with high confidence (α = 0.05) of Pipistrellus pipistrellus, P. 
pygmaeus and Plecotus spp.  Therefore, future surveys should cover at least 70 sites for five non-
consecutive nights but aim to cover 90 sites per season in order to maximise power. This level of 
survey effort is likely achievable with the assistance of citizen scientists in Jersey as there was 
great interest in volunteering for the 2019 survey. None of the other species managed to 
approach the 80% power threshold through any feasible combination of survey design and the 
number of sites surveyed, except the Pipistrellus nathusii/kuhlii species group which needed a 
minimum of 120 sites. Our estimates are subject to revision using a more accurate classifier, more 
comprehensive FPTs testing, more complete information on the occupancy and detection of 
Jersey bat species and the exploration of different metrics such as abundance to calculate 
population trends.  

Key recommendations: 

• Data collection from a network of static acoustic sensors using citizen scientists is a feasible and 
economical method for future monitoring of bats in Jersey and seems worthwhile pursuing in 
conjunction with existing monitoring programmes (e.g. Indicator Bats Programme). 

• Improvements to the BatIdentify algorithm are needed for the development of future 
monitoring programmes and to utilize more effectively the data collected from existing acoustic 
monitoring programmes. Efforts should focus on collecting species reference calls so BatIdentify 
can retrained on more comprehensive datasets and species which are recorded in Jersey. In 
particular, data collection and retraining should focus on Pipistrellus kuhlii and the two Plecotus 
species as these are of high regional importance to Jersey.  

• Estimating False Positive Tolerances (FPTs) is a useful technique to assess false positive 
classification error in species classifications, but the manual verification dataset used here was 
rather limited and these analyses should be repeated with a more comprehensive set of data. 
Additionally, manual verification ideally should be carried out independently by more than one 
expert.   

• Using changes in occupancy to monitor populations is a powerful technique and further 
improvements which incorporate error rates, habitat variables, and other data sources should 
be carried in order to better understand future survey effort and design. For some widespread 
and common species, estimating population trends with measures of abundance should be 
considered to compliment the results presented here. 

• The detection of some bat species, even with improved information, may be insufficient for this 
method to produce long-term robust population trends, so therefore a multi-disciplinary 
approach is required to encompass the full range of bat species found locally, and the methods 
described here should be used in conjunction with other surveys.  

• Scaling up the pilot surveys into a monitoring programme will also require a strong volunteer 
network of motivated and trained citizen scientists and a robust digital infrastructure to store 
and analyse large volumes of acoustic data. The resources required to accomplish this should be 
given careful consideration. 
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Section 1. Introduction and Report Scope 
Monitoring changes in the abundance and occupancy patterns exhibited by species is a vital step in 
understanding their conservation status and to inform the prioritisation of effective conservation actions. 
Bat populations form an important component of ecosystems across the planet, providing services such 
as pest control, pollination and reforestation. Their high trophic position and varied life history traits, in 
terms of reliance on different habitat and prey types, also makes them useful indicators of wider 
environmental health. Their sensitivity to local environmental changes combined with slow breeding rates 
also makes bat populations vulnerable to rapid changes in land usage and climate. As such, long term 
monitoring is a vital to understand changes to bat populations, and to deploy appropriate conservation 
actions where necessary.  

To date, 18 species of bats have been recorded in Jersey, with 8 species confirmed as breeding locally 
(Table 1.1). Due to their uncertain conservation status, all of bat species found locally are legally protected 
under the Conservation of Wildlife (Jersey) Law 2000 and are covered by a Species Action Plan as part of 
the Biodiversity Strategy for Jersey (2000). Protection of biodiversity in general, and bats specifically, is 
also seen as a key consideration in individual and strategic development planning through the Planning 
and Building (Jersey) Law 2002 and the Jersey Island Plan (2011). Furthermore, Jersey is signatory to a 
number of multilateral environmental agreements (e.g. the Bern Convention on the Conservation of 
European Wildlife and Natural Habitats, the Bonn Convention on the Conservation of Migratory Species 
of Wild Animals, and the EUROBATS Agreement on the Conservation of Populations of European Bats) 
which place monitoring and protection of bats as a high priority for member states. 

Table 1.1 Bat species found in the UK and Jersey. Status represents whether these species have been 
recorded in UK/Jersey, where unknown or unknown [vagrant] represents species which have only been 
recorded once, or from unconfirmed acoustic or roost records, and * indicates species for which the 
acoustic classifier BatIdentify cannot currently recognise.  

Species Common name UK Status Jersey Status 
Barbastellus barbastellus Barbastelle Resident Not recorded 
Eptesicus serotinus Serotine Resident Resident  
Hypsugo savii* Savi's pipistrelle Not recorded Unknown [vagrant] 
Myotis alcathoe Alcathoe bat Resident Resident  
Myotis bechsteinii Bechstein's bat Resident  Not recorded 
Myotis brandtii Brandt's bat Resident Unknown 
Myotis daubentonii Daubenton's bat Resident Unknown 
Myotis emarginatus* Geoffroy's bat Not recorded Unknown [vagrant] 
Myotis mystacinus Whiskered bat Resident Unknown 
Myotis nattereri Natterer's bat Resident Resident 
Nycatlus leisleri Leisler's bat Resident Unknown [vagrant] 
Nyctalus noctula Noctule Resident Unknown 
Pipistrellus kuhlii* Kuhl's pipistrelle Not recorded Resident  
Pipistrellus nathusii Nathusius' pipistrelle Resident Resident [vagrant] 
Pipistrellus pipistrellus Common pipistrelle Resident  Resident  
Pipistrellus pygmaeus Soprano pipistrelle Resident Resident  
Plecotus auritus Brown long-eared bat Resident Resident 
Plecotus austriacus Grey long-eared bat Resident Resident  
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Rhinolophus ferrumequinum Greater horseshoe bat Resident Unknown 
Rhinolophus hipposideros Lesser horseshoe bat Resident Unknown 

 

Bat population monitoring in Jersey is currently carried out since 2011 by Government of Jersey’s Natural 
Environment Team in the Department of Growth, Housing and Environment through the Indicator Bats 
programme (iBats) (an annual Passive Acoustic Monitoring, PAM scheme which records acoustic surveys 
along a driven transect), and through a roost monitoring scheme led by the Jersey Bat Group. Analysis of 
5 years of iBats data generated population trends for the common (Pipistrellus pipistrellus) and soprano 
(P. pygmaeus) pipistrelle bat, indicating an increase of 34% and 51%, respectively between 2012 and 2015 
(Hawkins et al., 2016; Williams et al., 2019). Indicator Bats was unable to produce robust trends for a 
wider range of bat species during this period due to an inherent sampling bias towards species which 
make frequent use of roads and edge habitats, and also because of the limited timespan of the data series. 
However, inclusion of data collected since 2015 into the analysis of trends may change this picture. The 
use of roost data for determining trends in bat populations has been limited due to difficulties obtaining 
repeat access to known roosts, and low reporting rates of new roosts. As such, there remain a number of 
questions about the status of Jersey’s bat populations, further hindered by a limited understanding of 
local species diversity and ecology. 

Following nearly 10 years of the iBats programme with driven road transects, the Government of Jersey 
are investigating alternative monitoring strategies capable of producing population trends for a wider 
range of bat species. Although PAM is widely regarded as the best technique for gathering bat activity 
data on a wide scale, the widespread use of PAM techniques for monitoring in Jersey has been limited by 
the high cost of equipment and lack of resources to analyse the large volume of data collected by this 
method. However, the increased availability of cheap, open source acoustic sensors and development of 
automated machine learning techniques for detecting and classifying bat calls mean that collection and 
analysis of large amounts acoustic data over a wide area is now a feasible option. Indeed, a new survey 
deploying a network of static acoustic sensors (AudioMoths Hill et al., 2018) and using detection (Mac 
Aodha et al., 2018) and classification (Fairbrass et al., 2018) algorithms to automatically analyse acoustic 
data is in development to monitor bats in the UK by The Bat Conservation Trust’s British Bat Survey 
(Fairbrass et al., 2018). However, there are some questions that need to be answered in order to 
understand the potential of a such a scheme in Jersey.  

This report, commissioned by the Government of Jersey, considers the following questions which are 
critical to the application of the proposed methodology: 1) are the automated call detection and 
classification algorithms developed for UK species suitable for use in Jersey; 2) what is the occupancy and 
detection of bat species in Jersey; and 3) are the methods proposed capable of producing robust long 
term trends in bat populations? To answer these questions, we report on the design, data collection and 
analyses of two years of pilot surveys in Jersey building our previous research (Glynn 2018) and make 
recommendations for the potential of this methodology to improve the monitoring of bat populations in 
Jersey. 
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Section 2. 2018-19 Pilot survey design and data collection 
For the pilot surveys, 1 km2 ordnance survey grid was used as a basis for site selection in order to remain 
consistent with ongoing local, national and international monitoring schemes for other taxonomic groups. 
Habitat availability is known to influence bat species’ activity and occupancy; as such the Phase 1 Habitat 
Survey of Jersey (2011) was used to select 5 key habitat types representative of the island 
(Agricultural/Arable, Grassland, Urban, Woodland and Water, Figure 1). The amount of area of each 
habitat within each 1 km grid square was calculated and used to threshold the grids as to whether they 
were representative of the habitat of interest and to determine the locations for acoustic sensor 
placement (survey sites), following 2 different sampling regimes (one in 2018 and the other in 2019) 
designed to provide different information regarding the suitability of the methodology.  

Figure 2.1. Distribution of pilot survey locations across Jersey for 2018-19. Triangles represent survey 
locations; triangle and background map colours correspond to habitat types simplified from the Phase 1 
habitat survey of Jersey. 

In 2018, 90 survey sites were selected following a random stratified approach in order to sample habitats 
in a way representative of habitat availability across the island (i.e. if 60% of the island is agricultural, 60% 
of the acoustic sensors were placed in agricultural land; Figure 2.1, Table 2.1 and Supplementary Table 
S1). This method provides an overview of bat activity relative to habitat availability which is useful in 
determining strategic landscape scale conservation actions. However, in 2019 50 sites were randomly 
selected equally within each of the five habitat types, with 10 acoustic sensors placed in each habitat 
(Figure 2.1, Table 2.2 and Supplementary Table S1). This enables a more detailed comparison of detection 
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rates for different bat species in different habitats which may influence the optimum survey design. 
Specific locations within each grid were selected in 2018 by starting at the centre of the square and 
working outwards until an area of suitable habitat was identified, and in 2019 a desk based random 
selection was used based on the Phase 1 Habitat Survey. In both years, acoustic data was collected in July, 
to coincide with the period when bat activity is at its highest, but before the young of the year are flying. 
This provides the optimum time for data collection with a high probability of encountering bats, whilst 
avoiding a temporary peak in the population when young pups are first active away from the roost.  

Table 2.1. Summary of survey visits and bat activity by habitat type from the pilot survey 2018-19. 
n(sites) refers to the number of survey sites per habitat; n(fails) number of unsuccessful surveys; n(visits) 
number of times the site was surveyed; n(files) number of 10 second duration files generated across all 
visits; n(files w/bat) number of 1 minute files containing a bat call; n(call) number of bat calls across all 
surveys; and mean(calls) relates to the average number of calls recorded in each habitat per visit (i.e. 
n(calls)/n(visits)). Bat activity (number of calls of all species) were estimated using the BatDetect algorithm 
(Mac Aodha et al., 2018).  

2018 - Proportional representation of habitats 

Habitat   n(sites) n(fails) n(visits) n(files) n(files w/ bat) n(calls) mean(calls) 
Arable   34 0 101 242,748  43,243  862,217 8,537 
Grassland   32 0 95 228,533  24,529  319,657 3,365 
Urban   12 0 36 84,447  12,389  299,432 8,318 
Water   1 0 3 7,085  1,892  29,689 9,896 
Woodland   7 0 21 50,810  16,694  387,083 18,433 
Total  86 0 256 613,623 98,747 1,898,078 7,414 

2019 - Equal representation of habitats 

Habitat   n(sites) n(fails) n(visits) n(files) n(files w/ bat) n(calls) mean(calls) 
Arable   10 1 26 60,825  2,595  25,603 985 
Grassland   10 1 31 88,423  11,107  58,141 1,876 
Urban   10 1 37 73,132  7,850  238,229 6,439 
Water   10 0 31 71,369  22,157  970,955 31,321 
Woodland   10 1 33 77,969 10,811 204,441 6,195 
Total  50 4 158 371,718 54,520 1,497,369 9,477 

 

A single acoustic sensor was deployed at each survey location, each location was surveyed 3 times on non-
consecutive nights in 2018 and left in place for between 3 - 6 nights in 2019 (start and end time 20:30:00-
05:30:00; sample rate 384 kHz; medium gain; recording intervals of 10 seconds with no sleep duration). 
The acoustic sensors used for this study - the first generation of AudioMoths (Hill et al., 2018) were 
selected because their low price enabled deployment of a large network of sensors. To protect the sensors 
from the weather, they were housed in an acrylic case and the internal microphone shielded by an 
acoustic vent which allows sounds to pass through. There is some evidence to suggest that this type of 
weatherproof housing somewhat negatively affects the detection rates and higher quality recordings 
might be achieved using other housing designs.   

One of the key considerations when designing a monitoring scheme, is the sustainability of the scheme 
enabling repeat surveys year on year. As such, many monitoring schemes employ volunteer citizen 
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scientists to share out the survey work, spreading the resources required for data collection. In order to 
explore whether this model is suitable for the proposed methodology, we recruited 5 volunteers to assist 
with sensor deployment in 2018, and 28 in 2019. Overall, this was a success with the majority of volunteers 
successfully managing one or more survey sites following a short training session with very few issues 
reported. The main issues surrounded the setup of the AudioMoths highlighting the need for more robust 
training, or automated systems for configuring the devices. Other issues which led to survey failure 
included equipment faults and sensors being moved after deployment, both of which are commonplace 
issues in large scale monitoring and which can be accounted for. 

In both surveys, once each sensor had completed a deployment it was retrieved, and the data downloaded 
and backed up onto two hard disk drives. The audio files were then moved to a secure server at University 
College London before being processed by the automated detection and classification algorithms. Data 
collected in 2019 was recorded across consecutive nights, which violates the assumptions of the 
occupancy models used later in the analysis. To avoid this, a summary of the visits made in 2019 was used 
to subset the complete dataset so that only data collected on non-consecutive nights were included in 
the analysis. 
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Section 3. Suitability of bat detection and classification algorithms for Jersey 
Data 
3.1. Background 
The rise of remote sensor technologies in wildlife monitoring has driven a need for tools which can process 
large volumes of data quickly, efficiently and accurately, and acoustic surveys of bats are frequently 
limited by the amount of data that can be processed manually. For example, the data collected in the 
2018 pilot survey alone amounted to 4.5 TB, consisting of over 600,000 sound files representing ~1700 
hours of recordings. There is a great deal of interest in the development of automated systems for 
classifying bat calls to species, many of these based around measuring and comparing parameters known 
to be representative for different species (e.g. peak/start/end frequency, inter-pulse interval). This 
approach often requires the bat calls to be located and parameterised within the sound files using 
specialist software, necessitating significant manual input.  

A new approach becoming widely adopted by ecologists across a range of disciplines, is the use of machine 
learning to classify species automatically. With this approach, an algorithm is trained using a set of labelled 
data to recognise certain features which are distinctive between different species. When applied to new 
data, the algorithm identifies these distinctive features and determines the probability of the unknown 
data and matches to those species in the training set. Two new machine learning algorithms in particular 
are of interest here, as these automatically detect (or isolate) bat calls within an audio file (BatDetect; 
Mac Aodha et al., 2018, Fairbrass et al., 2018), and subsequently classify calls to different species 
(BatIdentify; Fairbrass et al., 2018). BatDetect was trained on data collected from a wide range of 
locations around the world as part of the iBats Programme, using files with a wide variety of call structures 
and background noises present. As such it achieves very high success rates in detecting bat calls within a 
file (Mac Aodha et al., 2018). BatIdentify is still in the developmental stages, and so far has been trained 
on recordings collected from bats leaving roosts where the species is known, or from bats which have 
been caught, light tagged, and released (avoiding release calls which are not necessarily representative of 
echolocation in normal flight).  

Currently, BatIdentify is trained solely to classify search phase echolocation calls and largely trained on 
labelled data collected in the UK (although recordings from Jersey have been used for grey long-eared 
bats, Plecotus austriacus). Bats alter the structure of their search phase calls based on the surrounding 
environment and their current activity (e.g. commuting between areas compared to actively foraging 
within an area) and intersperse regular search phase calls with other call types (e.g. feeding buzzes, and 
social calls). This high level of variability within species’ call characteristics leads to a large degree of 
overlap in the parameters used to identify between species. This causes difficulties (sometimes 
insurmountable) in distinguishing between species even for a highly experienced human expert. For an 
automated species identification algorithm to be successful, it must be trained on the full range of possible 
call types for a species, requiring a large amount of data to be collected and correctly labelled. With 
enough training data these algorithms can achieve high levels of success, however it is important to 
understand that there will always be a level of error. Error can be introduced through high frequency calls 
produced by nocturnal insects (e.g. bush-crickets and some moths) and small mammals (e.g. shrews), and 
abiotic sounds produced by passing vehicles, electric fences, and the acoustic sensors themselves. 
Furthermore, Jersey is home to at least one and possibly up to three bat species not found in the UK and 
not included in the current classifier (e.g. Kuhl’s pipistrelle, Pipistrellus kuhlii), and has not recorded some 
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species found in the UK which are included in the current classifier (e.g. western barbastelles, Barbastellus 
barbastellus). In the case of P. kuhlii, the algorithm would classify these calls to the most similar species 
in the training set (in this case P. nathusii), leading to artificially high error in calls classified as P. nathusii. 

Understanding how well the existing algorithms perform for detecting and classifying different species is 
essential in interpreting data processed using these methods. For Jersey, it is also important to assess 
whether a system trained on bats in the UK is suitable for local use, given different species assemblages. 
Here, we report on the success rates achieved by both BatDetect and BatIdentify based on manual 
verification of a subset of calls. We then provide details of a tool for thresholding classifications based on 
confidence levels provided for each call by BatIdentify, which facilitates downstream analysis and 
interpretation of the results. 

3.2. Methods 
The audio files for 2018 and 2019 were processed through BatDetect v.2 (Mac Aodha et al., 2018; 
Fairbrass et al., 2018) and BatIdentify v.2 (Fairbrass et al., 2018) (Supplementary Table S2 -S4). For the 
following verification analysis, we used data from 2018 and only retained calls detected with greater than 
50% confidence score. A random sample of 200 classifications per confidence level (at 0.1 intervals from 
0.5-0.9) were selected for manual verification for the BatDetect analysis, and up to 15 classifications per 
classifier confidence level (at 0.1 intervals from 0.1 - 0.9) per species were selected for the BatIdentify 
analysis (Supplementary Table S2). The order in which the files were analysed was randomised, and the 
automatic classifications hidden to avoid any influence. Manual verification was carried out by H. Glynn 
using Kaleidoscope version 5.1.9g (Wildlife Acoustics), based on call parameters described in Barataud 
(2015), Russ (2012) and Middleton et al. (2014). For the BatDetect analysis, manual classifications of 
sounds were made to non-bat/bat and for the BatIdentify analysis, classifications were made to species. 
Sounds which were could not be categorised to non-bat/bat or species were discounted from the analysis. 
Although this has the potential to bias the classification success rates by only considering calls that can be 
confidently identified, this was a pragmatic approach.  

Following manual checking, the automated and manual classifications were compared, and each call 
assigned a score of 1 (successful classification) or 0 (false classification). For the BatIdentify analysis, this 
was firstly done for each individual species, and then again with a condensed species list grouping similar 
species together (Supplementary Table S3). P. kuhlii was not in the training data for BatIdentify so cannot 
be classified and would be likely be confused with a species (P. nathusii) with similar call characteristics. 
Therefore, these species were grouped together. Out of five Myotis species assessed, M. nattereri enjoyed 
substantially greater success than the others. As such M. nattereri was assessed as an individual species, 
whereas the other Myotis species were grouped together. 

We ran logistic regressions for non-bat/bat or each species/species group, to compare the false positive 
rates at different levels of classifier confidence (Supplementary Table S2 and S3). For each species/species 
group, we adopted the approach of Barré et al. (2018) and used these models to predict the confidence 
level at which each species achieved a known false positive rate ranging from 50% to 10%. The error rate 
at each of these levels is also known and was used as a tool to threshold the data based on False Positive 
Tolerances (FPTs) between FPT50 and FPT90 (known error rate = 50% and 10% respectively). Using the 
automated species classifications as a baseline, we extracted each pairwise combination of automated 
versus manual classification, and then calculated the proportion of times each combination occurred 
within the data; i.e. given the automated species classification, how often was the classification correct 
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(true positive) and how often did the call belong to a different species (false positive). This is represented 
as a confusion matrix, which highlights where there are common misclassifications between species.  

3.3. Results 
3.3.1. BatDetect 
The BatDetect algorithm had an average success rate of 95% true positive identifications of bat calls from 
a subset of 1000 files analysed across a range of confidence levels (0.5-0.9) (Figure 3.1).   

 

Figure 3.1 Performance of 
BatDetect algorithm. Black dots 
represent classifications, and blue 
line represents the logistic 
regression of success probability 
(0,1) over a range of classifier 
confidence intervals.   

 

 

 

 

 

 

3.3.2. BatIdentify 
When assessed as individual species, only P. pipistrellus and E. serotinus met the highest threshold for 
error (FPT90) (Figure 3.2, Figure 3.3, Table 3.1, Supplementary Table 2). Myotis nattereri, P. nathusii and 
Plecotus austriacus reached FPT50 – FPT60 (Figure 3.2, Table 3.1). Myotis daubentonii, Nyctalus leisleri, 
N. noctula, P. pygmaeus and P. auritus all showed low thresholds for false positives. The remainder of 
automated species classifications (Barbastellus barbastellus, M. alcathoe, bechsteinii and brandtii, and 
Rhinolophus ferrumequinum) proved to be false positives, mostly due to confusion with other bat species, 
other nocturnal wildlife and abiotic noises (Supplementary Figure 1, Figure 3.3). Analysis of the species 
groups showed P. nathusii/kuhlii achieving FPT90, the Plecotus group FPT60, but Myotis and Nyctalus 
groups both failed to achieve the lowest FPT (FPT50). 
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Figure 3.2 Performance of BatIdentify algorithm for species and species groups. Black dots represent 
classifications, and blue line and shaded grey represents the logistic regression and confidence intervals 
of success probability (0,1) over a range of classifier confidence scores.   
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Figure 3.3. Confusion 
matrix showing the 
proportion of correct 
and incorrect species 
classifications. 
BatIdentify is unable 
to assign a ‘no bat’ 
classification indicated 
by the grey bar. The 
‘No Bat’ row highlights 
where confusion with 
non-bat noises 
frequently occurred. 

 

 

 

 

 

 

 

Table 3.1. Summary of results from the logistic regression analysis assessing success rates in BatIdentify 
using 2018 pilot data from Jersey. Classifier confidence scores represent upper values meeting the false 
positive tolerance (FPT) thresholds, and ncheck represents the total number of files manually checked. 

  Model Results FPT50 FPT60 FPT70 FPT80 FPT90   
Species Intercept Estimate Classifier Confidence Score ncheck 
Barbastellus barbastellus -26.57 0.00 - - - - - 72 
Eptesicus serotinus -3.15 7.64 0.41 0.47 0.52 0.59 0.70 88 
Myotis nattereri -0.88 1.76 0.50 0.73 0.98 - - 76 
Myotis spp -2.98 0.36 - - - - - 252 
Nyctalus spp -4.92 5.37 0.92 0.99 - - - 169 
Pipistrellus n/k 0.29 2.44 0.00 0.05 0.23 0.45 0.78 87 
Pipistrellus pipistrellus 0.54 3.09 0.00 0.00 0.10 0.27 0.54 105 
Pipistrellus pygmaeus -4.57 4.75 0.96 - - - - 83 
Plecotus spp 0.32 0.52 0.00 0.16 - - - 147 
Rhinolophus ferrumequinum -26.57 0.00 - - - - - 60 
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3.4. Discussion 
Our analysis shows that the performance of BatDetect to find calls of all bat species in Jersey in 
AudioMoth recordings is high but the species identifications are more variable. One resident (Pipistrellus 
kuhlii) and two vagrant (Hypsugo savii, Myotis emarginatus) Jersey species not included in the 
BatIdentify training set and therefore cannot be identified and may be confused with other species. 
However, the classifications for other species are accurate enough to generate robust data for five 
species/species groups (Eptesicus serotinus, M. nattereri, P. nathusii/kuhlii, P. pipistrellus and Plecotus 
spp), with classifications of E. serotinus, P. nathusii/kuhlii, and P. pipistrellus being highly accurate (FPT90 
- <10% of classifications are likely false). 

Pipistrelle species tend to be more readily separated by their calls as there is little overlap between their 
call characteristics, particularly with regard to the frequency of maximum energy (FMaxE). Furthermore, 
with the exception of P. kuhlii, this genus is widespread and frequently encountered in the UK, allowing 
for the development of larger reference call libraries to be used in training the classifier. Pipistrellus 
pipistrellus demonstrated the highest levels of success in the automated classification process, fostering 
a higher level of confidence in downstream analyses for this species. In contrast to previous analyses 
(Hawkins et al., 2016), the classifier failed to produce high success rates for P. pygmaeus. This species is 
encountered in Jersey infrequently but can be distinguished from other pipistrelles based on their use of 
higher frequency calls (FMaxE > 52 kHz). The reasons for the low success rates observed here are unclear, 
however there are unverified reports of P. pipistrellus making use of higher frequencies in Jersey which if 
accurate could affect the success of the classifier.  

Manual checking of calls classified to P. nathusii identified that many of these belonged to P. kuhlii, which 
shares similar call characteristics (FMaxE 35 – 42 kHz for each). P. kuhlii reference calls are not yet included 
in the training data for BatIdentify rendering individual analysis impossible. However, grouping these two 
species together improved the success rate of the classifier for this call type to around 80%, enabling 
higher confidence in their identification. It is vital that efforts are made to incorporate P. kuhlii into the 
classifier, as it is important to distinguish between these two species for monitoring and conservation 
planning. In particular, P. nathusii is known as a long-distance migrant, and it is necessary to establish 
whether they are year-round residents in Jersey or whether the island supports only a migratory 
population.  

The classifier performed well for E. serotinus at higher confidence levels. The steep drop in the number of 
accepted classifications between FPT80 and FPT90, indicates that there may be quick gains by improving 
the confidence of the classifier with additional training. This would further strengthen confidence in 
results for this species for ongoing monitoring. Serotines, along with Nyctalus spp, emit loud calls ending 
at lower frequencies (15 – 30 kHz) facilitating clearer recordings of their calls which benefits the classifier. 
The status of the two noctule species (N. leisleri and N. noctula) is very uncertain in Jersey, relying largely 
on old roost records. Positive identifications of both were made during the manual verification of 
classifications, although for the analyses here they were grouped by genus. Other surveys have failed to 
detect noctules locally, this may be due to a limited or infrequent local distribution or difficulties detecting 
these species using other methods. Noctules are less frequently encountered during trapping surveys for 
example, due to their niche as high flying aerial hawkers. Therefore, continued use of PAM may prove 
useful in better understanding the local status of these species. 
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When grouped, the Plecotus genus was classified with moderate success. Long-eared bats produce very 
quiet echolocation calls which are hard to detect and suffer from attenuation at higher frequencies, 
increasing the difficulty of successfully detecting and classifying calls acoustically. P. austriacus is an 
important flagship species locally, as it widespread, charismatic and Jersey likely supports the largest 
population in the British Isles. The status of P. auritus is less well known locally, although seemingly 
widespread, few roosts are known. Their echolocation characteristics show a degree of overlap 
(particularly during commuting flights) but are distinguishable in many cases by lower end frequencies of 
the first harmonic (Barataud et al., 2015). Development of the classifier for Plecotus should therefore be 
a priority in order to enable better assessment of their status using PAM. Efforts should be focussed on 
obtaining reference calls from Plecotus species emerging from known roosts or during trapping surveys 
to improve the ability of BatIdentify to split this group.  

Of the Myotis bats, success rates only reached moderate FPTs for Myotis nattereri with the classifier 
showing very limited success for other species. Very little is known about these bats locally, with five new 
species encountered in the last 7 years. Most Myotis species in Jersey are known only from a handful of 
records, although M. nattereri is captured frequently during autumn swarming trapping surveys. This 
genus is also difficult to identify acoustically as there is a large degree of intraspecific overlap, and 
interspecific variation in echolocation characteristics depending on their activity and surroundings 
(Barataud, 2015). The calls of M. nattereri span a large range of frequencies and feature a particularly low 
end frequency (< 20 kHz), making them the most distinctive calls in this genus. This likely explains the 
relative success of BatIdentify for this species compared to others. In developing the classifier for Myotis 
bats, it will be important not only to develop a call library for those species encountered, but also to better 
understand the status of this genus in Jersey through other means (e.g. trapping and radio tracking). 

Before grouping, M. alcathoe, M. bechsteinii and M. brandtii were all identified by the classifier with a 0% 
success rate. Similarly, Barbastellus barbastellus and Rhinolophus ferrumequinum were entirely 
misidentified during the classification process. The misclassifications broadly fell into three groups: other 
bat calls, other biotic sounds, and abiotic sounds. The majority of Myotis misclassifications came from 
either very steep frequency modulated calls produced by members of the Pipistrelle genus in cluttered 
environments, or the calls made during the terminal phase of approaching prey. Social calls made by other 
bats were also often a source of confusion for the classifier, particularly in the misclassification of Nyctalus 
spp. The main cause of confusion for B. barbastellus was through noises made by bush-crickets and moths, 
and for R. ferrumequinum, constant frequency noises made by the AudioMoths themselves led to the 
most misclassifications. 

The accuracy of BatIdentify v2 for Jersey as measured by False Positive Tolerances is based on manual 
verification using reference material and was limited to a small subset of data for each species. Although 
this method should allow robust results to be obtained from a small sample size (Barré et al., 2019), future 
assessments of error rates should aim to increase the sample size and be carried out by multiple 
independent verifiers. Improving BatIdentify by increasing both the range of species covered and the 
number of examples from each species should also be a priority for the Government of Jersey in order to 
analyse existing data for any future acoustic monitoring programmes and maximising the usefulness of 
existing ones (e.g. Indicator Bats Programme).   
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Section 4. Baseline occupancy and detection estimates for Jersey bat species 
4.1. Background  
Occupancy modelling provides an opportunity to assess the probability of a species of interest being 
present in a given area, separating this from the probability of detecting that species during surveys. This 
measure is incredibly useful when studying species distributions and habitat associations, and when 
measured repeatedly over time can be used to generate trends in changes to patterns of occurrence. 
Occupancy modelling is especially useful when the difficulties of individual species recognition precludes 
generating direct estimates of species abundance to monitor trends in population abundance directly, as 
is the case when monitoring bats acoustically. For example, the Bat Conservation Trust uses occupancy of 
different species at points along a set transect over time to monitor UK populations (Barlow et al. 2015). 
It is possible to generate estimates of relative abundance from the amount of acoustic activity but as yet 
the understanding of the relationship between the number of calls recorded from a static sensor and the 
individual number of bats present is limited. As such, it is more difficult to make inferences about 
abundance. However, these data are suitable for use in occupancy modelling and this is a useful place to 
start analyses of trends. 

Here, we use the acoustic data collected across the pilot surveys across Jersey in 2018-2019 to calculate 
presence or absence of different species of bats to estimate the baseline occupancy and detection 
probabilities. We also explore the impact of the variation in classification FPTs of the BatIdentify algorithm 
on the occupancy estimates for different species.   

4.2. Methods 
All the raw audio files for 2018 and 2019 pilot surveys were processed through BatDetect v.2 (Mac 
Aodha et al., 2018; Fairbrass et al., 2018) and BatIdentify v.2 (Fairbrass et al., 2018), and classifications 
were subset for each species/species groups (Supplementary Table S2 and S4). Data were subset per site 
to only include data from non-consecutive nights.  Presence or absence of each of the five 
species/species groups that had classifications with FPT>50 (Section 3) was then determined within 1 km 
grids at each FPT (FPT50 – FPT90; Table 4.1). We then generated a single season occupancy model to 
estimate occupancy (Ψ) and detection (p) (MacKenzie et al., 2018) using the unmarked package in R 
(Chandler et al., 2019) for each species/species group. We explored whether including habitat and 
weather covariates were informative in the models by including environmental data in the occupancy 
models. Data from the Jersey Met Office was used to calculate the average nightly temperature (mean = 
16.8 oC, SD = 0.75 oC), precipitation (mean = 0.01 mm, SD = 0.03 mm) and wind speed (mean = 4.10 ms-1, 
SD = 1.67 ms-1). These values were standardised using the vegan package (Oksanen et al., 2019) and 
included in initial models as observation covariates as possible influences on detection probability. The 
habitat defined for each site through the initial site selection process (Supplementary Table 1) was also 
recorded as a site covariate for occupancy probability. However, early testing of 2018 survey data 
models showed that these were not informative due to limited variation in the data. As such 
environmental variables were excluded from the rest of the analysis. 
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Table 4.1 Summary of the number of calls for five species/species groups in Jersey recorded during 
2018-2019 pilot surveys used in the occupancy analysis. ncalls represents the number of calls classified by 
BatIdentify and nocc represents the number of corresponding occupied grid squares for species across the 
range of FPTs assessed (50 – 90). Dash represents occasions when thresholding to the each FPT removed 
all calls, or when occupancy modelling failed to produce a result (see 4.3. Results). 

  Total FPT50 FPT60 FPT70 FPT80 FPT90 
Species/Species Group ncalls ncalls nocc ncalls nocc ncalls nocc ncalls nocc ncalls nocc 

2018            
Eptesicus serotinus 6,803 2,197 73 1,682 70 1,362 64 1,000 49 472 27 
Myotis nattereri 1,370 1,113 53 623 40 - - - - - - 
Pipistrellus n/k 77,059 77,059 - 77,059 - 75,590 - 49,292 90 5,851 76 
Pipistrellus pipistrellus 1,778,925 1,778,925 - 1,778,925 - 1,778,925 - 1,774,856 - 1,608,568 - 
Plecotus spp 6,596 6,596 - 6,572 86 - - - - - - 

2019            
Eptesicus serotinus 2,636 575 24 382 19 270 13 129 10 28 7 
Myotis nattereri 290 155 13 30 7 - - - - - - 
Pipistrellus n/k 28,171 28,171 - 28,171 44 28,017 44 14,186 40 747 27 
Pipistrellus pipistrellus 1,195,164 1,195,164 - 1,195,164 - 1,195,164 45 1,191,294 45 1,016,081 45 
Plecotus spp 1,574 1,574 - 1,571 35 - - - - - - 

 

4.3. Results 
The highest occupancy and detection estimates in both years and across all FPTs was observed for 
Pipistrellus pipistrellus and P. nathusii/kuhlii (Table 4.2, Figures 4.1 and 4.2). In fact, P. pipistrellus was 
detected at every site on every visit at FPT50 - 70 in 2018 and FPT50 - 60 in 2019, and as such the models 
failed to find any variation in detection history. There was some variation in occupancy observed for P. 
pipistrellus (FPT70 - 90) and P. nathusii/kuhlii (FPT60 - 70) in the 2019 data, however large error bars 
indicate a large degree of uncertainty in this result (Figure 4.1). Occupancy estimates obtained for P. 
nathusii/kuhlii at FPT80 and 90 were relatively high, although the estimate at FPT90 was lower in 2019 
compared to 2018 (Figure 4.1). Detection estimates for both of these species remained stable across FPTs, 
with the exception of a sharp decline at FPT90 for P. nathusii/kuhlii (Figure 4.2). 

Plecotus species also demonstrated high levels of occupancy in 2018 and 2019 (Ψ = 0.96 and 0.70 
respectively). The detection probability for Plecotus demonstrated a sharp drop between 2018 and 2019 
(p = 0.85 – 0.58; Figure 4.2). Similarly, Myotis nattereri showed a large decrease in occupancy and 
detection estimates between years, and also between FPT levels (Figures 4.1 and 4.2). Both of these 
species could only be modelled at moderate FPT levels (FPT50 - 60), and as such should be viewed with 
caution. Eptesicus serotinus was the only species for which occupancy could be modelled at all FPT levels 
(Table 4.2). In 2018, the occupancy estimate remains relatively stable at lower FPTs (Ψ = 0.95 – 0.91), 
before falling substantially at FPT90 (Ψ = 0.39). Conversely, in 2019 the occupancy estimate decreased 
sharply between FPT50 - 70 (Ψ = 0.86 – 0.36) before stabilising at higher FPTs (Ψ = 0.36 – 0.30). Detection 
estimates also followed a different pattern between years; although detection was generally higher in 
2018, at moderate FPT levels, estimates in both years were equivalent (Figure 4.2). 
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Table 4.2. Occupancy and detection estimates from single species, single season occupancy models for 
five species/species groups in Jersey at different false positive tolerance (FPT) levels. The proportion of 
survey squares occupied during each season (propocc) is given along with the occupancy (Ψ) and detection 
(p) estimates, with upper and lower 95% confidence limits, * represents those which failed to produce 
estimates. 

2018 - proportional representation of habitats 
Species FPT propocc Ψ ΨL95 ΨU95 p pL95 pU95 
Eptesicus serotinus 50 0.81 0.93 0.70 0.99 0.50 0.42 0.58 
Eptesicus serotinus 60 0.78 0.95 0.48 1.00 0.44 0.35 0.52 
Eptesicus serotinus 70 0.71 0.91 0.56 0.99 0.40 0.31 0.49 
Eptesicus serotinus 80 0.54 0.79 0.50 0.94 0.32 0.23 0.44 
Eptesicus serotinus 90 0.30 0.39 0.26 0.54 0.39 0.26 0.54 
Myotis nattereri 50 0.59 0.69 0.54 0.80 0.48 0.39 0.58 
Myotis nattereri 60 0.44 0.52 0.39 0.65 0.47 0.36 0.58 
Pipistrellus n/k 50 - 70 1.00 - - - - -         -    * 
Pipistrellus n/k 80 1.00 1.00 0.00 1.00 0.99 0.97 1.00 
Pipistrellus n/k 90 0.84 0.87 0.77 0.93 0.70 0.63 0.76 
Pipistrellus pipistrellus 50 - 90 1.00 - - - - -         -    * 
Plecotus spp 60 0.96 0.96 0.89 0.99 0.85 0.79 0.89 

2019 - equal representation of habitats 
Species FPT propocc Ψ ΨL95 ΨU95 p pL95 pU95 
Eptesicus serotinus 50 0.48 0.86 0.28 0.99 0.27 0.17 0.40 
Eptesicus serotinus 60 0.38 0.63 0.35 0.85 0.29 0.18 0.44 
Eptesicus serotinus 70 0.26 0.36 0.21 0.56 0.39 0.24 0.56 
Eptesicus serotinus 80 0.20 0.30 0.15 0.51 0.34 0.19 0.54 
Eptesicus serotinus 90 0.14 0.32 0.09 0.69 0.18 0.05 0.47 
Myotis nattereri 50 0.26 0.39 0.21 0.61 0.33 0.18 0.52 
Myotis nattereri 60 0.14 0.23 0.09 0.46 0.29 0.11 0.57 
Pipistrellus n/k 50 1.00 - - - - -         -    * 
Pipistrellus n/k 60 0.88 1.00 0.00 1.00 0.81 0.74 0.86 
Pipistrellus n/k 70 0.88 1.00 0.00 1.00 0.81 0.74 0.86 
Pipistrellus n/k 80 0.80 0.91 0.76 0.97 0.74 0.65 0.81 
Pipistrellus n/k 90 0.54 0.76 0.50 0.91 0.37 0.26 0.49 
Pipistrellus pipistrellus 50 - 60 1.00 - - - - -         -    * 
Pipistrellus pipistrellus 70 0.90 1.00 0.00 1.00 0.92 0.87 0.96 
Pipistrellus pipistrellus 80 0.90 1.00 0.00 1.00 0.92 0.87 0.96 
Pipistrellus pipistrellus 90 0.90 1.00 0.00 1.00 0.92 0.86 0.95 
Plecotus spp 60 0.70 0.83 0.66 0.93 0.58 0.48 0.67 
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Figure 4.1. Occupancy estimates 
from single species, single season 
models for five species/species 
groups in Jersey at different false 
positive tolerance (FPT) levels. 
Points represent occupancy (Ψ) 
estimates and whiskers 95% 
confidence limits, colours represent 
estimates in each pilot survey year.  

 

 

 

 

 

 

 

 

Figure 4.2. Detection estimates 
from single species, single season 
models for five species/species 
groups in Jersey at different false 
positive tolerance (FPT) levels. 
Points represent detection (p) 
estimates and whiskers 95% 
confidence limits, colours represent 
estimates in each pilot survey year.  
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4.4. Discussion 
Our analysis generated baseline occupancy and detection estimates for five species/species groups of 
Jersey bat species. Pipistrellus pipistrellus was found to be so widespread across Jersey, that it was present 
at every survey site during each survey in 2018, and in at least 90% of survey squares in 2019. As such the 
occupancy modelling approach proved to be ineffective, as the models cannot estimate occupancy and 
detection probabilities with little to no variation in the detection history. The occupancy of P. pipistrellus 
is consistent with other evidence that these species are widespread across Jersey (Hawkins et al. 2016; 
Williams et al., 2019). Detection histories of P. nathusii/kuhlii also showed little to no variation in either 
year, although, at FPT90 there was enough variation to estimate occupancy and detection probabilities. 
With such widespread species, other analysis techniques such as estimating relative abundance from 
acoustic activity might be more appropriate to monitor population trends.  

The occupancy of Plecotus species was modelled at FPT60 (>40% of classifications are likely false) and 
inferences on occupancy and detection should be cautious on the basis of this analysis. In particular, the 
high detection estimate for Plecotus spp. in 2018 (p = 0.85) is likely to be an overestimate of the true rate. 
The occupancy estimates for this group (Ψ = 0.96 and 0.83 in 2018 and 2019 respectively) also appear 
high, given that P. auritus is usually restricted to woodland habitats, of which there are few locally. 
However, P. austriacus is known from roosts across the island, and a local paucity in their preferred 
foraging habitats (semi-improved and unimproved grassland) may lead this species to make greater use 
of the wider agricultural landscape. Less restrictive foraging behaviour enabling P. austriacus to access 
more of the island could explain the seemingly high occupancy estimates. Due to the difference in 
ecological requirements, and the local and national importance of Jersey’s P. austriacus population, it is 
desirable to distinguish between these species for monitoring purposes. 

Occupancy estimates were moderate to low for M. nattereri, reflective of a likely patchy local distribution 
restricted to particular habitats (e.g. woodland). The degree of influence habitat availability has on the 
distribution of M. nattereri and other species here should be examined in more depth through the 
inclusion of appropriate habitat covariates in the modelling process. However, failure to achieve FPTs 
above FPT60 limits the reliability of the estimates presented, as such these should be used carefully until 
such time as the classification process is more robust. Increasing FPT levels led to decreasing estimates of 
occupancy for Eptesicus serotinus. This result is expected, as increasing the proportion of false positives 
in the data is likely to lead to a species being detected at sites where it is not present. However, in 2018, 
the occupancy estimate remained stable at lower FPTs before dropping substantially at FPT90, whereas 
in 2019 the occupancy estimate dropped at lower FPTs and stabilised between FPT70 – 90. This may be 
due to the different site selection processes employed, but comparable estimates at FPT90 for both years 
indicates that the thresholding approach used is capable of providing consistent results at high FPTs.  

The results demonstrate a tendency for occupancy and detection estimates to be lower in 2019 when 
compared to 2018. Different approaches were taken to site selection in each year: in 2018 habitats were 
sampled proportionally based on overall island wide availability, and in 2019 habitats were represented 
equally. Jersey is dominated by its agricultural landscape, comprising a mix of crop, pastoral and grassland 
therefore, in 2018 over two thirds of the sites surveyed were represented by arable or grassland habitat 
types. Species which specialise in open agricultural or edge habitats, such as pipistrelles and serotines, are 
therefore more likely to be encountered during these 2018 surveys, driving higher occupancy and 
detection estimates. The opposite may be expected for clutter specialists such as Myotis nattereri and P. 
auritus, however a similar decrease in occupancy and detection estimates is seen between the two survey 
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years. This indicates that there are processes not encapsulated by this analysis affecting occupancy, and 
further research should be carried out into the potential for site specific features (e.g. surrounding habitat, 
distance to roads and water, length of hedgerows) to influence patterns of occurrence. The null models 
reported here however, provide a generalised view of island wide occupancy which is sufficient as a basis 
for further research. 

The error thresholding approach employed in this study aimed to minimise, or at least help explain, the 
impact of error in the data on our understanding of bat ecology. However, even at the highest FPT (FPT90) 
around 10% of the classifications are incorrect. We have used a simple modelling approach to assess 
occupancy and detection estimates here, but moving forward, the use of occupancy models which 
explicitly account for false positives and the impact of other environmental variables should be developed, 
and data collected from other surveys (e.g. roost and trapping surveys) can be included in such models to 
help account for error. The use of other metrics should also be explored to understand how abundance 
measures might be estimated from relative acoustic activity to track population trends.    
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Section 5. Power to detect trends in occupancy of bat species in Jersey over time  
5.1. Background  
Investment in new wildlife monitoring schemes is often substantial in terms of purchasing equipment, 
building a volunteer base and committing time and budget over a number of years. A common criticism 
of monitoring schemes comes when they fail to deliver robust results following significant resource input. 
It is vital to spend time early on investigating the statistical power of a proposed methodology to deliver 
the desired results. This should include consideration of the practicalities of particular methods, the 
ecological metrics of interest, what degree of change in these metrics over time provokes a response, and 
what this response will be. For example, the Jersey Bat Survey aims to use a network of static acoustic 
sensors to record bat calls across the island. The degree to which this is achievable will depend on the 
number of sensors available and the number of sites which can be surveyed (i.e. sufficient volunteer 
resource). Currently, the metric of ecological interest is occupancy probability which is determined by 
ecological processes inherent to the life histories of each species and tempered by our ability to accurately 
detect the presence of a species in a given area. It is these two metrics which will influence the capability 
of the proposed methodology to deliver robust trends, and resource availability that will constrain survey 
design. 

In order to assess the power of the Jersey Bat Survey methodology to detect a change in the occupancy 
of bat species, we ran a series of power analyses for various feasible survey designs. Power analyses allow 
for parameters in the survey methodology (number of sites and visits) and species ecology (occupancy 
probability) to be varied, assessing the ability (power) of a methodology to detect a pre-determined 
ecological effect (in this case, a change in occupancy). The results provide an insight into how practical 
considerations around survey effort and investment may influence the power of the survey and can be 
used to guide future development of the Jersey Bat Survey. 

5.2. Methods 
We conducted a series of power analyses designed for use with an occupancy modelling framework based 
on variations to the survey design (Guillera-Arroita and Lahoz-Monfort, 2012) for the five species/species 
groups. The scenarios represent practical options for deploying a sensor network locally and cover all 
combinations of the following: 30, 60, 90 or 120 sites, and 3, 6 or 9 repeat visits. The analyses were 
parameterised based on detecting a 25% change in occupancy between any two survey seasons, with a 
significance level of α = 0.05 at a power of 0.8. The significance and power levels are based on common 
practice in power analyses, and the 25% change in occupancy reflects the amount of change required for 
an amber listing for the Bat Conservation Trust’s National Bat Monitoring Programme (Barlow et al., 
2015). This method takes the starting parameters and simulates the power achieved across the full range 
of detection and occupancy probabilities possible (0 – 1). This is then visualised via a contour plot with 
the occupancy and detection estimates from the occupancy models at the maximum possible False 
Positive Tolerance to give an approximation of where particular species/species groups are likely to fall. 
The estimates used were those generated from the 2019 data (Section 4, Table 4.2). As the 2019 data 
were collected equally over the range of habitats available it gives a generalised overview of occupancy 
across the island. This is in contrast to a bias towards particularly common habitats (arable and grassland) 
in the 2018 data.  

We also repeated the analyses for species found in Jersey for which occupancy and detection estimates 
could not be obtained in our study (Myotis brandtii/mystacinus, M. daubentonii, Nyctalus leisleri, N. 
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noctula, and Pipistrellus pygmaeus) using the estimates presented in Newson (2017). The estimates are 
based on published values for these bat species in the UK which may not be representative of bats in 
Jersey, and so the results should be considered provisional until more information is available. 

5.3. Results 
Carrying out surveys at 30 sites, regardless of the number of visits failed to achieve the power to detect a 
25% change in occupancy for any species other than P. pipistrellus (Table 5.1, Figure 5.1). Increasing the 
number of sites to 60 only brought one additional species, P. pygmaeus (based on data from Newson 
2017), up to the target of 80% power. Plecotus spp. are very nearly encapsulated by 60 sites over 6 visits 
(power = 0.74), indicating that a small increase in the number of sites may be sufficient to confidently 
include this group. At 90 sites, Plecotus spp. exceeds 80% power with 6 visits, P. nathusii/kuhlii now gets 
close to the threshold (power = 0.68, increasing to 0.78 with 9 visits). However, P. nathusii/kuhlii only 
achieves 80% power at 120 sites with 6 visits (Figure 5.1). This suggests that for species exhibiting lower 
occupancy estimates, a substantial increase in the number of sites surveyed would be required to achieve 
the desired power. Of the 10 species included in the analysis, low occupancy estimates for 6 species lead 
to their failure to achieve the necessary power for any scenario tested (Figure 5.1). 

Table 5.1. Results from the power analysis showing the power achieved across a range of survey 
methodologies comprising of each combination of 30, 60, 90 and 120 sites surveyed, and 3, 6 and 9 
repeat visits. Occupancy (Ψ) and detection (p) estimates used in the power analyses are also given, * 
indicates species/species groups for which estimates were obtained from Newson 2017. 

  
Occupancy 
Estimates Power achieved for different survey strategies (nsites x nvisits) 

Species Ψ p 30 x 3 30 x 6 30 x 9 60 x 3 60 x 6 60 x 9 
Eptesicus serotinus 0.32 0.18 0.06 0.07 0.09 0.06 0.10 0.13 
Myotis nattereri 0.23 0.29 0.06 0.08 0.08 0.07 0.11 0.12 
Pipistrellus n/k 0.76 0.37 0.13 0.29 0.34 0.22 0.51 0.59 
Pipistrellus pipistrellus 1.00 1.00 0.88 0.88 0.88 0.99 0.99 0.99 
Plecotus spp. 0.83 0.58 0.34 0.46 0.46 0.59 0.74 0.75 
Myotis brandtii/mystacinus* 0.22 0.83 0.08 0.08 0.08 0.12 0.12 0.12 
Myotis daubentonii* 0.32 0.78 0.11 0.11 0.11 0.16 0.17 0.17 
Nyctalus leisleri* 0.21 0.86 0.08 0.08 0.08 0.12 0.12 0.12 
Nyctalus noctula* 0.42 0.88 0.14 0.14 0.14 0.22 0.22 0.22 
Pipistrellus pygmaeus* 0.93 0.96 0.68 0.68 0.68 0.93 0.93 0.93 

      90 x 3 90 x 6 90 x 9 120 x 3 120 x 6 120 x 9 
Eptesicus serotinus 0.32 0.18 0.07 0.12 0.17 0.07 0.14 0.21 
Myotis nattereri 0.23 0.29 0.08 0.13 0.15 0.10 0.16 0.19 
Pipistrellus n/k 0.76 0.37 0.31 0.68 0.76 0.39 0.80 0.87 
Pipistrellus pipistrellus 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Plecotus spp. 0.83 0.58 0.76 0.89 0.90 0.87 0.96 0.96 
Myotis brandtii/mystacinus* 0.22 0.83 0.15 0.16 0.16 0.19 0.19 0.19 
Myotis daubentonii* 0.32 0.78 0.22 0.22 0.22 0.28 0.28 0.28 
Nyctalus leisleri* 0.21 0.86 0.15 0.15 0.15 0.18 0.18 0.18 
Nyctalus noctula* 0.42 0.88 0.31 0.31 0.31 0.40 0.40 0.40 
Pipistrellus pygmaeus* 0.93 0.96 0.99 0.99 0.99 1.00 1.00 1.00 
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Figure 5.1. Power curves demonstrating the level of statistical power achieved using differing survey 
methodologies across a range of occupancy and detection probabilities. Coloured dots represent the 
approximate position of different species based on occupancy and detection estimates from this study. 
Where this was not possible estimates from Newson (2017) were used, indicated by *. The solid line 
indicates the 80% power threshold. 



Glynn & Jones – Jersey Bat Survey 

 26 

5.4. Discussion 
Our results using the detection and occupancy estimates from the 2019 pilot surveys in Jersey and those 
from Newson (2017) for missing species, indicate that carrying out surveys at 90 sites will be sufficient for 
Pipistrellus pipistrellus, P. pygmaeus and Plecotus spp. Therefore, ongoing surveys should cover at least 
70 sites, but aim to cover 90 sites per season in order to maximise power. Each site should be surveyed a 
minimum of 5 non-consecutive nights per season, in order to fulfil the requirements of the occupancy 
models and to improve the chances of picking up less detectable species. This level of survey effort is likely 
achievable with the assistance of citizen scientists in Jersey as there was great interest in volunteering for 
the Jersey Bat Survey in 2019, and this enthusiasm should be fostered to maintain and enhance the 
support. Our analysis also suggests that in order to exceed the power threshold for the Pipistrellus 
nathusii/kuhlii species group a minimum of 120 sites should be surveyed. This level of survey input is only 
likely to be possible in Jersey if there is a substantial increase in the number of volunteer citizen scientists. 
None of the other species managed to approach the 80% power threshold through any feasible 
combination of survey design and the number of sites surveyed. Given Jersey’s size this means that at 
present the power of the survey for these other species is limited.  

It is important to consider some caveats to our results. Firstly, the information for some of the species 
presented use estimates come from the UK (Newson 2017). Efforts should be made to include relevant 
information for Jersey bat populations as previous work has shown that occupancy and detection 
estimates for bat species tend to be higher in the mainland than in Jersey (Hawkins et al., 2016). Secondly, 
the power analyses for other species/species groups are ultimately based on the accuracy of the classifier 
and improved confidence in the classification process will enable development of more accurate 
occupancy estimates, generating a more robust view of the potential power of this survey.  Thirdly, using 
other metrics such as abundance, rather than occupancy to understand the potential power of the survey 
should be explored, for example using relative bat acoustic activity as estimates of abundance. This may 
increase the sensitivity of the survey and reduce the effort needed to produce meaningful trends. 
Fourthly, analysis has been based on the ability to detect a 25% change in occupancy between any two 
survey periods. This is in line with the definition used by the Bat Conservation Trust for assessing an amber 
risk to species (Barlow et al., 2015). However, given Jersey’s size, a 25% decline in occupancy of any 
particular species may represent a substantial impact on local populations. It would be beneficial to 
consider whether aiming to detect a lower level of change would be more relevant for Jersey, so any 
decline can be detected before it becomes too severe. Finally, the computing power and storage required 
for the analysis of the audio data is not trivial. If the survey is to be rolled out on the scale suggested, there 
needs to be substantial investment in digital infrastructure to manage the project.  
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Section 6. Synthesis and Recommendations 
In our report, we describe the implementation of two pilot surveys in Jersey in 2018 and 2019 using a 
static sensor network and open-source automated acoustic machine learning algorithms, and then use 
these data to understand the potential of this monitoring system to generate long-term bat population 
trends.  We conclude that data collection from a network of static sensors deployed using citizen 
scientists with automated acoustic detection and classification is a feasible and economical method for 
future monitoring of bats in Jersey and seems worthwhile pursuing in conjunction with existing 
monitoring programmes (e.g. Indicator Bats Programme). 

Our results suggest that the performance of BatDetect v.2 to find calls of all bat species in Jersey as 
determined by False Positive Tolerances, FPTs through manual verification is high but the accuracies of 
species classifications in BatIdentify v.2 are more variable. Improvements to the BatIdentify algorithm 
are needed for the development of any future acoustic monitoring programmes and also importantly, to 
better utilize the data collected from existing acoustic monitoring programmes in Jersey. Efforts should 
focus on collecting species reference calls so BatIdentify can be retrained on more comprehensive 
datasets and species which are representative of Jersey. In particular, data collection and retraining 
should focus on Pipistrellus kuhlii and the two Plecotus species as these are of high regional importance 
to Jersey.  

BatIdentify produces classifications accurate enough (FPTs >50) to generate robust data for five 
species/species groups (Eptesicus serotinus, M. nattereri, P. nathusii/kuhlii, P. pipistrellus and Plecotus 
spp.), with classifications of E. serotinus, P. nathusii/kuhlii, and P. pipistrellus being especially accurate 
(FPT90 - <10% of classifications are likely false). FPTs for other species were low, surprisingly including a 
widespread and common species in Jersey with a distinctive call (P. pygmaeus). Estimating FPTs is a 
useful technique to assess error in species classifications, but the manual verification dataset used here 
was rather limited and these analyses should be repeated with a more comprehensive set of data and 
manual verification should be carried out independently by more than one expert.   

Using the five species with FPTs >50, analysis of occupancy, Ψ and detection, p using data across 2018-
19 suggested that P. pipistrellus had the highest occupancy across the island followed by Plecotus spp. P. 
nathusii/kuhlii and M. nattereri, with occupancy estimates of E. serotinus less certain. However, for 
species with lower FPTs these estimates should be used cautiously. Using changes in occupancy to 
monitor populations is a powerful technique and further improvements which incorporate error rates, 
habitat variables, and other data sources should be carried out in order to better understand future 
survey effort and design. For some widespread and common species, estimating population trends with 
estimates of abundance should be considered to compliment the results presented here. 

Our results using the occupancy and detection estimates from the 2019 survey in Jersey and those from 
the UK , indicate that 90 sites will be sufficient to detect a 25% change in occupancy with high confidence 
(α = 0.05) of Pipistrellus pipistrellus, P. pygmaeus and Plecotus spp.  Therefore, future surveys should cover 
at least 70 sites for five non-consecutive nights but aim to cover 90 sites per season in order to maximise 
power. This level of survey effort is likely achievable with the assistance of citizen scientists in Jersey as 
there was great interest in volunteering for the 2019 survey. None of the other species managed to 
approach the 80% power threshold through any feasible combination of survey design and the number of 
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sites surveyed, except the Pipistrellus nathusii/kuhlii species group which needed a minimum of 120 sites. 
Our estimates are subject to revision with a more accurate classifier, more comprehensive FPTs testing, 
more complete information on the occupancy and detection of Jersey bat species and exploring the use 
of different metrics such as abundance to calculate population trends. The detection of some bat species, 
even with improved information, may be insufficient for this method to ever produce long-term robust 
population trends, so therefore a multi-disciplinary approach is required to encompass the full range of 
bat species found locally, and the methods described here should be used in conjunction with other 
surveys. Scaling up the pilot surveys into a monitoring programme will also require a strong volunteer 
network of motivated and trained citizen scientists and a robust digital infrastructure to store and analyse 
large volumes of acoustic data. The resources required to accomplish this should be given careful 
consideration.  
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Supplementary Information  
Supplementary Table S1. Survey locations for 2018 and 2019, including habitat and location 
information. 

2018  2019 
Site Habitat Latitude Longitude n(visits)  Site Habitat Latitude Longitude n(visits) 
C1 Grassland 49.2051 -2.1684 2  WV5648 Grassland 49.1860 -2.2264 4 
C2 Miscellaneous 49.2581 -2.1490 0  WV5650 Water 49.2044 -2.2176 4 
C3 Arable 49.2517 -2.1494 3  WV5651 Water 49.2112 -2.2202 2 
C4 Arable 49.2433 -2.1484 3  WV5654 Arable 49.2418 -2.2287 0 
C5 Arable 49.2240 -2.1514 3  WV5748 Grassland 49.1880 -2.2088 1 
C6 Grassland 49.2157 -2.1509 3  WV5750 Water 49.2028 -2.2174 3 
C7 Grassland 49.1979 -2.1585 3  WV5751 Water 49.2162 -2.2058 2 
C8 Arable 49.2483 -2.1377 3  WV5754 Arable 49.2442 -2.2144 4 
C9 Arable 49.2388 -2.1407 3  WV5849 Urban 49.1965 -2.1962 4 

C10 Arable 49.2221 -2.1405 3  WV5851 Water 49.2164 -2.2029 2 
C11 Arable 49.2152 -2.1404 3  WV5853 Arable 49.2283 -2.1932 4 
C12 Arable 49.2046 -2.1412 3  WV5854 Grassland 49.2426 -2.1976 4 
C13 Grassland 49.1981 -2.1439 3  WV5947 Woodland 49.1731 -2.1820 4 
C14 Arable 49.2320 -2.1236 3  WV5948 Grassland 49.1871 -2.1856 4 
C15 Woodland 49.2100 -2.1243 3  WV5950 Grassland 49.2003 -2.1869 4 
C16 Arable 49.2040 -2.1273 3  WV5954 Arable 49.2360 -2.1813 2 
C17 Urban 49.1960 -2.1251 3  WV6049 Woodland 49.1952 -2.1684 2 
C18 Urban 49.1771 -2.1091 3  WV6051 Woodland 49.2087 -2.1660 4 
C19 Urban 49.1851 -2.1093 3  WV6052 Woodland 49.2212 -2.1724 4 
C20 Urban 49.1908 -2.1031 3  WV6053 Grassland 49.2298 -2.1739 4 
C21 Urban 49.1856 -2.0977 3  WV6150 Grassland 49.2016 -2.1537 0 
C22 Urban 49.1933 -2.0943 3  WV6152 Arable 49.2247 -2.1547 4 
C23 Urban 49.1770 -2.0821 3  WV6251 Woodland 49.2136 -2.1367 5 
C24 Urban 49.1855 -2.0847 3  WV6252 Arable 49.2212 -2.1399 2 
C25 Urban 49.1967 -2.0820 3  WV6255 Arable 49.2508 -2.1380 2 
C26 Grassland 49.2073 -2.1111 3  WV6350 Water 49.2072 -2.1348 4 
C27 Arable 49.2151 -2.1115 3  WV6352 Grassland 49.2247 -2.1339 4 
C28 Grassland 49.2231 -2.1061 3  WV6353 Water 49.2315 -2.1318 3 
C29 Grassland 49.2320 -2.1099 3  WV6448 Urban 49.1856 -2.1113 4 
C30 Grassland 49.2361 -2.1114 3  WV6449 Urban 49.1982 -2.1167 4 
E1 Grassland 49.2538 -2.1007 3  WV6450 Urban 49.2042 -2.1135 4 
E2 Arable 49.2477 -2.0980 3  WV6451 Grassland 49.2088 -2.1212 4 
E3 Arable 49.2410 -2.0989 3  WV6452 Arable 49.2239 -2.1188 2 
E4 Arable 49.2213 -2.0964 3  WV6548 Urban 49.1898 -2.0974 0 
E5 Grassland 49.2131 -2.0997 3  WV6550 Woodland 49.2005 -2.1032 3 
E6 Grassland 49.2058 -2.0961 3  WV6647 Urban 49.1748 -2.0856 2 
E7 Grassland 49.2377 -2.0861 3  WV6649 Grassland 49.1960 -2.0920 2 
E8 Arable 49.2305 -2.0878 3  WV6650 Water 49.2043 -2.0883 4 
E9 Urban 49.2017 -2.0819 3  WV6651 Woodland 49.2163 -2.0906 5 
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E10 Arable 49.2212 -2.0729 3  WV6652 Woodland 49.2244 -2.0800 2 
E11 Arable 49.1945 -2.0692 3  WV6746 Urban 49.1663 -2.0744 5 
E12 Arable 49.1870 -2.0698 3  WV6748 Urban 49.1826 -2.0766 5 
E13 Woodland 49.1737 -2.0740 3  WV6847 Arable 49.1740 -2.0636 2 
E14 Woodland 49.2361 -2.0525 3  WV6850 Arable 49.2042 -2.0577 4 
E15 Grassland 49.2217 -2.0561 3  WV6947 Urban 49.1807 -2.0421 5 
E16 Grassland 49.2069 -2.0512 3  WV6949 Water 49.1953 -2.0457 2 
E17 Grassland 49.1884 -2.0540 3  WV6950 Water 49.2011 -2.0414 5 
E18 Arable 49.1759 -2.0566 3  WV6952 Woodland 49.2193 -2.0474 4 
E19 Arable 49.1697 -2.0595 3  WV7047 Urban 49.1752 -2.0354 4 
E20 Arable 49.2314 -2.0406 3  WV7053 Woodland 49.2277 -2.0280 0 
E21 Arable 49.2136 -2.0384 3       

E22 Arable 49.2035 -2.0437 3       

E23 Grassland 49.1691 -2.1672 3       

E24 Woodland 49.1944 -2.0451 3       

E25 Grassland 49.1887 -2.0388 3       

E26 Arable 49.1776 -2.0413 3       

E27 Grassland 49.2322 -2.0265 3       

E28 Arable 49.2216 -2.0302 3       

E29 Arable 49.2137 -2.0315 3       

E30 Woodland 49.2038 -2.0247 3       

W1 Miscellaneous 49.2558 -2.2447 0       

W2 Miscellaneous 49.2449 -2.2458 0       

W3 Grassland 49.2552 -2.2396 3       

W4 Arable 49.2502 -2.2341 3       

W5 Grassland 49.2306 -2.2339 3       

W6 Miscellaneous 49.1786 -2.2318 0       

W7 Arable 49.2450 -2.2192 3       

W8 Arable 49.2322 -2.2221 3       

W9 Grassland 49.2217 -2.2261 3       

W10 Grassland 49.1771 -2.2231 3       

W11 Arable 49.2400 -2.2071 3       

W12 Grassland 49.2314 -2.2039 3       

W13 Grassland 49.2021 -2.2114 3       

W14 Grassland 49.1963 -2.2076 3       

W15 Grassland 49.1829 -2.2082 3       

W16 Grassland 49.2479 -2.1877 3       

W17 Arable 49.2311 -2.1924 3       

W18 Urban 49.2025 -2.1930 3       

W19 Urban 49.1923 -2.1951 3       

W20 Woodland 49.1830 -2.1890 3       

W21 Arable 49.2462 -2.1792 3       

W22 Grassland 49.2395 -2.1833 3       

W23 Arable 49.2248 -2.1808 2       

W24 Grassland 49.2141 -2.1798 3       
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W25 Arable 49.2028 -2.1804 3       

W26 Grassland 49.1941 -2.1784 3       

W27 Grassland 49.1706 -2.1835 3       

W28 Grassland 49.2401 -2.1652 3       

W29 Water 49.2143 -2.2060 3       

W30 Woodland 49.2116 -2.1640 3       
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Supplementary Table S2. Summary of the results of the manual checking of automated classifications. 
nraw is the number of calls automatically classified to each species across the range of classifier 
confidence in 2018 (0 – 1, reported in 0.1 increments); ncheck is the number of files manually checked; 
and nfp the number of false positive classifications in the checked data. 

 Upper limit of classifier confidence in automated classification  
 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 total 
         Barbastellus barbastellus 
nraw 224 1,069 890 552 364 218 65 - - 3,382 
ncheck 8 11 10 11 12 11 9 - - 72 
nfp 8 11 10 11 12 11 9 - - 72 
         Eptesicus serotinus 
nraw 617 2,191 1,681 832 543 467 366 106 - 6,803 
ncheck 11 10 11 11 12 12 10 11 - 88 
nfp 10 9 4 7 1 2 1 1 - 35 
         Myotis alcathoe 
nraw 220 1,518 1,147 290 53 2 - - - 3,230 
ncheck 8 9 10 12 10 1 - - - 50 
nfp 8 9 10 12 10 1 - - - 50 
         Myotis bechsteinii 
nraw 196 529 576 269 47 3 - - - 1,620 
ncheck 12 11 12 11 9 2 - - - 57 
nfp 12 11 12 11 9 2 - - - 57 
         Myotis brandtii 
nraw 760 4,166 3,978 2,471 1,461 683 113 4 - 13,636 
ncheck 13 9 10 10 10 12 11 1 - 76 
nfp 13 9 10 10 10 12 11 1 - 76 
         Myotis daubentonii 
nraw 150 379 309 147 87 40 8 - - 1,120 
ncheck 11 11 12 9 11 11 4 - - 69 
nfp 11 9 9 8 7 11 4 - - 59 
         Myotis mystacinus 
nraw - - 1 - 1 - - - - 2 
ncheck - - - - - - - - - 0 
nfp - - - - - - - - - 0 
         Myotis nattereri 
nraw - 53 103 101 115 256 466 276 - 1,370 
ncheck - 10 11 11 10 12 11 11 - 76 
nfp - 4 6 7 6 8 2 3 - 36 
         Nyctalus leisleri 
nraw 249 1,742 2,177 2,171 1,907 1,408 557 28 - 10,239 
ncheck 12 12 11 12 10 12 12 11 - 92 
nfp 12 12 10 11 9 10 8 6 - 78 
         Nyctalus noctula 
nraw 206 1,399 882 442 276 117 32 - - 3,354 
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ncheck 12 11 9 12 12 11 10 - - 77 
nfp 12 11 9 12 11 10 10 - - 75 
         Pipistrellus nathusii 
nraw 560 5,429 14,002 15,322 14,358 12,783 10,719 3,886 - 77,059 
ncheck 12 10 11 11 12 9 11 11 - 87 
nfp 11 8 8 9 5 5 7 6 - 59 
         Pipistrellus pipistrellus 
nraw 448 7,000 34,933 81,644 143,813 293,713 574,780 637,782 4,812 1,778,925 
ncheck 12 11 13 12 11 12 10 12 12 105 
nfp 2 3 4  1   1 1 12 
         Pipistrellus pygmaeus 
nraw 505 1,966 10,848 18,522 9,151 4,611 2,701 687 - 48,991 
ncheck 12 12 10 12 9 8 8 12 - 83 
nfp 12 10 10 11 9 8 5 7 - 72 
         Plecotus auritus 
nraw 59 460 483 263 104 17 3 - - 1,389 
ncheck 12 10 9 12 11 8 1 - - 63 
nfp 12 10 6 12 9 8 1 - - 58 
         Plecotus austriacus 
nraw 250 1,287 1,207 1,021 762 537 140 3 - 5,207 
ncheck 12 12 11 13 12 11 11 2 - 84 
nfp 4 5 7 2 3 5 5 1 - 32 
         Rhinolophus ferrumequinum 
nraw 32 226 21 16 95 243 6 - - 639 
ncheck 10 10 9 7 9 12 3 - - 60 
nfp 10 10 9 7 9 12 3 - - 60 
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Supplementary Table S3. Summary of the results of the manual checking of automated classifications 
for subsequently grouped species. nraw is the number of calls automatically classified to each species 
across the range of classifier confidence in 2018 (0 – 1, reported in 0.1 increments); ncheck is the number 
of files manually checked; and nfp the number of false positive classifications in the checked data. 

 Upper limit of classifier confidence in automated classification  
 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 total 
         Myotis spp ǀ M. alcathoe, bechsteinii, brandtii, daubentonii and mystacinus 
nraw 1,326 6,592 6,010 3,177 1,648 728 121 4 - 19,606 
ncheck 44 40 44 42 40 26 15 1 - 252 
nfp 44 38 41 41 36 26 15 1 - 242 
         Nyctalus spp ǀ N. leisleri and noctula 
nraw 455 3,141 3,059 2,613 2,183 1,525 589 28 - 13,593 
ncheck 24 23 20 24 22 23 22 11 - 169 
nfp 24 23 19 23 20 20 18 6 - 153 
         Pipistrellus NK ǀ P. kuhlii and nathusii 
nraw 560 5,429 14,002 15,322 14,358 12,783 10,719 3,886 - 77,059 
ncheck 12 10 11 11 12 9 11 11 - 87 
nfp 2 4 3 4 1 1 1 1 - 17 
         Plecotus spp ǀ P. auritus and austriacus 
nraw 309 1,747 1,690 1,284 866 554 143 3 - 6,596 
ncheck 24 22 20 25 23 19 12 2 - 147 
nfp 16 15 13 14 12 13 6 1 - 90 
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Supplementary Table S4. Summary of results of the automated classification of data collected in 2019. 
Numbers of calls classified to individual species (above) and species groups (below), as well as the 
number of files without any classified bat calls present. 
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Supplementary Figure S1. Confusion matrix showing the proportion of correct and incorrect species 
classifications in the subset of data sampled for manual checking. Grey bars indicate classifications 
which are not assessed by BatIdentify but were identified during manual checks. The ‘No Bat’ row shows 
where confusion with non-bat noises frequently occurred. 

 

 

 

 


