

PFAS Islander Meeting Minutes

01st May 2025 18:00hrs

Government of Jersey

TABLE OF CONTENTS

1.Welcome and Introductions	4
1.1 Introduction by Kelly Whitehead	4
1.2 Meeting Format and Housekeeping	4
2. Presentation by Jake Hurst	4
2.1 Background and Project Objectives	4
2.2 Scope of Phase 2 Study	5
2.3 Monitoring and Results	5
2.4 Conceptual Site Model	5
2.5 Risk Assessment	6
2.6 Remediation Options and Recommendations	6
3. Recommendations	7
3.1 Support Government Decision-Making	7
3.2 Establish a Coordinated Implementation Team	7
3.3 Targeted Assessment of Remediation Options	7
3.4 Address Identified Data Gaps	7
3.5 Develop a Comprehensive Remediation Strategy	7
3.6 Continue Monitoring and Trend Analysis	8
3.7 Investigate Drinking Water Treatment Options	8
3.8 Align Simon Sandpit Plans with Remediation Goals	8
3.9 Incorporate PFAS Waste and Soil Reuse Guidance	8
4. Summary of Government Response	8
5. Questions and Discussion	9
5.1 Historical Land Use and Borehole Concerns	9
5.2 Surface Water and Recreational Areas	9
5.3 Signage, Public Health and Intergenerational Impact	9
5.4 Arcadis Report Scope and Past Incidents	9
5.5 Agricultural Land and Local Produce	9
5.6 Water Supply and Long-term Planning	9
5.7 Testing Scope and Communication	10
5.8 Infrastructure and Future Use	10
5.9 Broader Geographic Scope and Public Health Testing	10
5.10 Drinking Water Sources and Dilution	10
5.11 Historical Trends and Plume Dynamics	10

5.12 Sustainability, Resources and Future Supply	11
5.13 Foam and Algae Observations	11
5.14 Testing Locations and Baseline Data	11
5.15 Access to Laboratory Data and Follow-up	11
6. Closing Remarks and Next Steps	11

1. Welcome and Introductions

Chair: Kelly Whitehead (Group Director of Regulation at Government of Jersey) Guest Speaker: Jake Hurst Associate Technical Director of Arcadis UK)

1.1 Introduction by Kelly Whitehead

- Kelly welcomed attendees and outlined the purpose of the meeting.
- The focus of the evening was to present the findings of the Arcadis hydrogeological study on PFAS contamination.
- It was clarified that political questions would be addressed at the Ministerial meeting in June.
- Attendees were invited to submit questions and comments during the session.
- The updated Q&A document was highlighted, with printed copies available in the room and the full version accessible online.
- Kelly explained that venue availability had necessitated changes to the meeting location, but that public meetings would return to St. Brelade's Parish Hall from June.
- Feedback on meeting venues and the format of public sessions was invited via feedback forms provided on the night.
- An update on the Water Quality and Safety (WQS) programme was shared:
 - Report 3 had been launched for public consultation, with a final version expected in July.
 - A separate public meeting had taken place the previous day to focus on environmental matters.
 - Arcadis would soon present their findings to the PFAS Scientific Advisory Panel to inform Report 4.
 - Ministers were not in attendance to allow a dedicated focus on technical matters during this session.

1.2 Meeting Format and Housekeeping

- Kelly outlined the structure of the meeting:
 - A technical presentation would be delivered by Jake Hurst of Arcadis.
 - \circ This would be followed by a Q&A session with the audience.
- Attendees were encouraged to direct technical questions to Jake during the evening.
- Political or broader policy-related questions were to be saved for the Ministerial meeting in June.
- Feedback was welcomed on both the Q&A document and overall communication approach.

2. Presentation by Jake Hurst

2.1 Background and Project Objectives

- Jake introduced the PFAS hydrogeological study.
- The study was commissioned by the Government of Jersey to investigate long-standing environmental and public health concerns.
- Key objectives of the study included:
 - Understanding the behaviour of PFAS (per and polyfluoroalkyl substances) in the environment, particularly in the vicinity of Jersey Airport.
 - Identifying how PFAS migrates through groundwater and surface water systems.
 - Assessing the potential risks to human health and the natural environment.

- Supporting the development of safe and sustainable long-term water supply strategies.
- Building public trust through transparent and open communication.
- Providing a scientific evidence base to inform future remediation and policy decisions.

2.2 Scope of Phase 2 Study

- Phase 2 built on the initial work of Phase 1, which compiled and visualised historical PFAS data to identify key knowledge gaps.
- Between July 2023 and May 2024, Arcadis carried out four quarterly monitoring campaigns.
- Over 230 samples were collected from:
 - \circ Approximately 30 groundwater boreholes
 - o 27 surface water sites
- PFAS-specific sampling protocols were used to avoid contamination and ensure data reliability.
- Passive samplers were deployed to measure average contamination levels over time.
- The study focused on two primary catchments:
 - \circ St. Ouen's Bay
 - o Pont Marquet
- Three new boreholes were installed to improve spatial coverage and data quality.
- Fieldwork was carried out in collaboration with Jersey's Water and Air team.
- Arcadis maintained independent oversight and undertook all data-led analysis.

2.3 Monitoring and Results

- Monitoring revealed persistent and significant PFAS contamination in key locations.
- The highest concentrations were found beneath the airport's former Fire Training Ground (FTG):
 - Levels reached up to 1,000 times higher than EU drinking water standards.
- PFAS "fingerprints" indicated multiple sources of contamination:
 - Both PFOS-based and mixed-foam types were detected, pointing to varied historical use across the airport site.
- Surface water pathways were identified as critical conduits for PFAS migration:
 - Creepy Valley stream
 - South SW outfall
- These pathways were found to influence contamination of nearby drinking water catchments.
- Rainfall and airport de-icing activities were shown to trigger spikes in PFAS levels.
- Passive samplers confirmed significant variability in contamination, especially following such events.

2.4 Conceptual Site Model

- Arcadis developed a detailed conceptual model of the subsurface environment to analyse PFAS transport mechanisms.
- Key features of the model included:
 - Approximately 30 metres of unsaturated fractured shale bedrock beneath the fire training ground, acting as a long-term PFAS reservoir.

- Groundwater generally flows westward, with some redirection potentially caused by historic pumping at Simon's Sandpit.
- \circ The model indicated that the sand and shale aquifers are hydraulically connected.
- Groundwater levels are typically higher than surface water levels in the northern areas:
 - This allows for potential discharge of contaminated groundwater into surface streams.
- In contrast, at Pont Marquet:
 - Surface water tends to flow above the groundwater table, limiting the potential for contamination exchange.
- The model played a critical role in identifying how and where PFAS is most likely to move through the environment and present risks.

2.5 Risk Assessment

- The risk assessment involved updating the conceptual site model and applying a tiered approach to PFAS data.
- PFAS concentrations were compared to UK and EU regulatory standards.
- Widespread exceedances were observed, particularly for PFOS.
 - Many of the most affected wells are not currently used for public water supply.
- Key findings included:
 - PFAS could take between 20 60 years to migrate from the fire training ground to the Jersey Water wellfield.
 - Travel time to the marine environment could extend up to 100 years, depending on the specific PFAS compound.
- These long travel times highlight the persistent nature of PFAS and the need for sustained long-term management strategies.
- Surface water pathways, such as the Pont Marquet stream, were identified as more responsive to remediation efforts.
- The assessment also considered:
 - Historical use of the site, including construction of a containment cell under the fire training ground.
 - \circ $\;$ The impact of rainfall and site infrastructure on PFAS mobilisation and spread.

2.6 Remediation Options and Recommendations

- Arcadis carried out a high-level appraisal of potential remediation strategies.
- The approach focused on reducing PFAS mass flux in a cost-effective and sustainable way.
- Priority interventions included:
 - Targeted soil excavation and capping at the fire training ground.
 - In situ flushing of contaminated bedrock.
 - Enhanced groundwater pumping and treatment using:
 - Activated carbon
 - Ion exchange technologies
- For the wider PFAS plume, additional options were considered:
 - \circ $\,$ Colloidal activated carbon injection.
 - Infilling Simon's Sandpit to redirect groundwater flow away from vulnerable areas.
- Drinking water treatment was identified as a top priority:

- Emphasis placed on addressing regulatory changes and the need for immediate action.
- In the Pont Marquet catchment, a phased approach was recommended:
 - \circ $\;$ Start with source control, such as pipe inspections and cleaning.
 - Follow with possible passive stormwater treatment technologies.

3. Recommendations

3.1 Support Government Decision-Making

- The study's findings are intended to directly inform decision-making by the Government of Jersey.
- Arcadis recommended the establishment of a structured and transparent framework to:
 - Evaluate potential remediation options.
 - Select the most appropriate and effective interventions for implementation.

3.2 Establish a Coordinated Implementation Team

- A dedicated implementation team should be formed to manage the next phase of remediation work.
- A clear schedule and defined responsibilities should be established.
- The team should include representatives from key stakeholders, including:
 - Government of Jersey
 - Ports of Jersey
 - o Jersey Water

3.3 Targeted Assessment of Remediation Options

- Shortlisted remediation options should be subject to further detailed assessment.
- This should include:
 - Cost-benefit analysis
 - Feasibility studies
- The aim is to refine the overall remediation strategy and ensure that selected interventions are both effective and practical.

3.4 Address Identified Data Gaps

- The study identified several data gaps, particularly regarding:
 - Groundwater dynamics
 - Sources of PFAS contamination
- These gaps should be prioritised for further investigation.
- Addressing them will help strengthen the evidence base and support informed decisionmaking.

3.5 Develop a Comprehensive Remediation Strategy

- A long-term, integrated remediation strategy should be developed to guide future actions.
 - The strategy should balance the following priorities:
 - $\circ \quad \text{Environmental protection}$
 - o Public health
 - Technical feasibility
 - Cost-effectiveness

- It should also take into account:
 - The evolving regulatory landscape
 - o Public expectations for timely and transparent action

3.6 Continue Monitoring and Trend Analysis

- Continued environmental monitoring is essential to:
 - Track PFAS trends over time
 - Validate the predictions made by the conceptual model
 - Assess the effectiveness of any implemented remediation measures
- Monitoring should cover both:
 - o Groundwater
 - Surface water

3.7 Investigate Drinking Water Treatment Options

- Drinking water treatment should remain a top priority, regardless of the chosen remediation approach.
- Key areas for evaluation include:
 - Technologies for PFAS removal
 - o Blending strategies to reduce PFAS concentrations
 - Alternative supply options to ensure a safe and secure public water supply

3.8 Align Simon Sandpit Plans with Remediation Goals

- Future plans for Simon Sandpit should be reviewed in the context of PFAS remediation.
- Consideration should be given to aligning any proposed developments with the broader remediation strategy.
- This is important because the site may influence:
 - Groundwater flow
 - PFAS transport pathways

3.9 Incorporate PFAS Waste and Soil Reuse Guidance

- The report contains specific guidance on PFAS waste management, including:
 - Waste acceptance criteria
 - Options for soil reuse
- These considerations should be integrated into the planning and execution of any:
 - Remediation activities
 - Construction projects involving contaminated materials

4. Summary of Government Response

- Kelly thanked Jake for his presentation and summarised the Government's initial response.
- She noted that the Arcadis report had been available for public review for only ten days.
- A Steering Group has been established to guide next steps, involving key stakeholders such as:
 - o Private landowners
 - Ports of Jersey
 - Jersey Water
- Government officers are engaging directly with property owners within the wider plume area.
- The Arcadis findings will directly inform Report 4 of the PFAS Scientific Advisory Panel.
- Additional environmental testing is currently underway.

• The findings will contribute to discussions at upcoming meetings, including the next public session scheduled for 12th June.

5. Questions and Discussion

5.1 Historical Land Use and Borehole Concerns

- A resident expressed concern about historical landfill activity in the area and its potential effect on local boreholes.
- Jake confirmed that all known landfill sites in the study area had been reviewed.
- No changes to PFAS "fingerprints" were detected in connection with these historic sites.

5.2 Surface Water and Recreational Areas

- Attendees raised concerns about children playing in streams near Creepy Valley, where PFAS contamination may be present.
- Jake confirmed that testing in this area had detected elevated PFAS levels.
- Kelly noted that the team is in the process of identifying relevant landowners and providing individual advice and guidance.

5.3 Signage, Public Health and Intergenerational Impact

- Attendees raised concerns about the absence of public signage warning of PFAS exposure risks, particularly for vulnerable groups such as children.
- The potential long-term and intergenerational impacts of exposure were highlighted.
- Kelly confirmed that both public health messaging and signage were under active review in response to recent feedback.

5.4 Arcadis Report Scope and Past Incidents

- Attendees asked whether the study had examined PFAS use related to historic plane crashes.
- Jake confirmed that known crash sites and use of firefighting foam by civil fire services had been assessed.
- While elevated PFAS levels were found in soils at some of these locations, no significant PFAS contamination was detected in nearby groundwater.

5.5 Agricultural Land and Local Produce

- Concerns were raised about potential risks to livestock and agricultural produce in areas affected by PFAS contamination.
- Attendees questioned the implications for food safety and local farming practices.
- Kelly acknowledged these concerns and confirmed that:
 - Further engagement with affected landowners is ongoing.
 - Individual advice and support will continue to be provided as more information becomes available.

5.6 Water Supply and Long-term Planning

Attendees questioned why boreholes previously used for firefighting activities were still in operation.

- Concerns were expressed about the reliance on short-term solutions for Jersey's water supply.
- Jake responded that contamination levels at the Jersey Water wellfields appeared to be stable or reducing over time.
- Kelly emphasised the importance of prioritising mains water treatment to ensure long-term resilience and security of supply.

5.7 Testing Scope and Communication

- Attendees asked whether PFAS testing was being conducted outside the identified plume area.
- Calls were made for greater transparency around the scope of testing and data availability.
- Jake and Kelly confirmed that:
 - Baseline testing was carried out in the 1990s and early 2000s, covering a wider geographic area.
 - The current programme is building on that earlier data to improve understanding and monitoring coverage.

5.8 Infrastructure and Future Use

- A resident recommended that future plans for Simon's Sandpit be aligned with PFAS remediation goals.
- Jake confirmed that Simon's Sandpit plays a role in influencing local groundwater flow.
- He noted that infilling the site was among the options considered in Arcadis's remediation appraisal.

5.9 Broader Geographic Scope and Public Health Testing

- Concerns were raised that areas such as St. John's may be overlooked in the current PFAS investigations.
- One resident reported private testing results indicating high PFAS levels outside the primary study area.
- Kelly explained that:
 - The current Arcadis commission is focused on a defined geographical area for hydrogeological assessment.
 - The PFAS Scientific Advisory Panel is undertaking broader public health and environmental investigations across the island.

5.10 Drinking Water Sources and Dilution

- Attendees asked about the extent to which borehole water is currently contributing to the island's public water supply.
- Kelly confirmed that:
 - $_{\odot}$ $\,$ Jersey Water is no longer drawing water from the affected boreholes.
 - Trends in recent years already show signs of dilution in PFAS concentrations within the broader supply network.

5.11 Historical Trends and Plume Dynamics

- An attendee asked whether the PFAS contamination plume is showing signs of shrinking over time.
- Jake responded that:
 - $_{\odot}$ $\,$ PFAS levels at the Jersey Water wellfield appear to be decreasing.

- However, broader trends across the plume area vary by location.
- Without intervention, PFAS contamination could persist in some areas until 2050–2080.

5.12 Sustainability, Resources and Future Supply

- A representative from Jersey Water outlined the island's current limitations in:
 - Water storage capacity
 - Water treatment infrastructure
- Attendees raised concerns about the long-term viability of:
 - Desalination as a sustainable water source
 - o Continued reliance on boreholes for supply, given contamination risks

5.13 Foam and Algae Observations

- Attendees queried whether foam observed in surface water was being tested for PFAS contamination.
- Jake explained that:
 - \circ $\;$ Arcadis was not conducting in-house testing of foam samples.
 - External laboratories were used for analysis.
 - \circ $\;$ Relevant data from these tests is included in the appendices of the Arcadis report.

5.14 Testing Locations and Baseline Data

- A former environmental tester recalled conducting PFAS sampling outside the airport area in the 1990s, with no significant contamination detected at that time.
- Kelly thanked them for their contribution and confirmed that:
 - Establishing and reviewing historical baseline levels remains an important part of the ongoing investigation.
 - Additional work will continue to refine the understanding of background PFAS levels across the island.

5.15 Access to Laboratory Data and Follow-up

- Attendees requested access to the detailed testing data and methodologies used in the Arcadis study.
- Jake confirmed that:
 - \circ $\;$ All relevant data is published in the appendices of the Arcadis report.
 - Additional presentations will be delivered to the PFAS Scientific Advisory Panel to support transparency and further explanation of the findings.

6. Closing Remarks and Next Steps

- Kelly closed the meeting by thanking Jake for his presentation and all attendees for their participation.
- Attendees were encouraged to:
 - \circ $\;$ Join the Water Quality and Safety Programme mailing list
 - Send any further queries or feedback to the Regulation Enquiries email address (<u>RegulationEnquiries@gov.je</u>)
- Kelly confirmed that:
 - Arcadis will present again to the PFAS Scientific Advisory Panel on 29th May

• Further updates and materials will be shared ahead of the next public meeting scheduled for June

Meeting closed at approximately 19:30